论文标题

从披肩到理解:改造预先训练的蒙版语言模型再到预训练的机器读取器

From Cloze to Comprehension: Retrofitting Pre-trained Masked Language Model to Pre-trained Machine Reader

论文作者

Xu, Weiwen, Li, Xin, Zhang, Wenxuan, Zhou, Meng, Lam, Wai, Si, Luo, Bing, Lidong

论文摘要

我们提出了预训练的机器读取器(PMR),这是一种新的方法,用于改造预先训练的蒙版语言模型(MLMS),以预先训练的机器阅读理解理解(MRC)模型,而无需获取标记的数据。 PMR可以解决现有MLM的模型预训练和下游微调之间的差异。为了构建所提出的PMR,我们通过使用Wikipedia超链接,构建了大量的通用和高质量的MRC风格训练数据,并设计了Wiki锚固提取任务来指导MRC风格的预训练。除了简单性外,PMR还有效地解决了提取任务,例如提取问题答案和命名实体识别。 PMR对现有方法显示出巨大的改进,尤其是在低资源场景中。当将MRC公式中的序列分类任务应用于序列分类任务时,PMR可以提取高质量的理由来解释分类过程,从而提供更大的预测性解释性。 PMR还具有作为解决MRC公式中各种提取和分类任务的统一模型的潜力。

We present Pre-trained Machine Reader (PMR), a novel method for retrofitting pre-trained masked language models (MLMs) to pre-trained machine reading comprehension (MRC) models without acquiring labeled data. PMR can resolve the discrepancy between model pre-training and downstream fine-tuning of existing MLMs. To build the proposed PMR, we constructed a large volume of general-purpose and high-quality MRC-style training data by using Wikipedia hyperlinks and designed a Wiki Anchor Extraction task to guide the MRC-style pre-training. Apart from its simplicity, PMR effectively solves extraction tasks, such as Extractive Question Answering and Named Entity Recognition. PMR shows tremendous improvements over existing approaches, especially in low-resource scenarios. When applied to the sequence classification task in the MRC formulation, PMR enables the extraction of high-quality rationales to explain the classification process, thereby providing greater prediction explainability. PMR also has the potential to serve as a unified model for tackling various extraction and classification tasks in the MRC formulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源