论文标题

打破障碍物$ 2^k $,用于弦图中的子集反馈顶点

Breaking the Barrier $2^k$ for Subset Feedback Vertex Set in Chordal Graphs

论文作者

Bai, Tian, Xiao, Mingyu

论文摘要

子集反馈顶点集问题(SFVS),要从给定的图中删除$ k $的顶点,以使顶点子集中的任何顶点(称为终端集)在其余图中不在周期中,概括了著名的反馈顶点设置问题和多路切割问题。即使在拆分图和和弦图中,SFV仍然保持NP-HARD,弦图中的SFV(SFVS-C)可以被视为隐式的3击集问题。但是,比三击集更快地解决SFVS-C并不容易。在2019年,菲利普,拉扬,索拉布和故事(Algorithmica 2019)证明,可以用$ \ nathcal {o}^{*} {*}(2^{k})$解决SFVS-C,稍微改善了最佳结果$ \ \ \ \ \ \ \ \ \ {o}^{o}^{2.076^$ {k.在本文中,我们通过给出了$ \ Mathcal {o}^{*}(1.820^{k})$ - 时间算法,打破了SFVS-C的“ $ 2^{k} $ - 障碍”。我们的算法使用基于dulmage-mendelsohn分解和分裂和串扰方法的减少和分支规则。

The Subset Feedback Vertex Set problem (SFVS), to delete $k$ vertices from a given graph such that any vertex in a vertex subset (called a terminal set) is not in a cycle in the remaining graph, generalizes the famous Feedback Vertex Set problem and Multiway Cut problem. SFVS remains NP-hard even in split and chordal graphs, and SFVS in Chordal Graphs (SFVS-C) can be considered as an implicit 3-Hitting Set problem. However, it is not easy to solve SFVS-C faster than 3-Hitting Set. In 2019, Philip, Rajan, Saurabh, and Tale (Algorithmica 2019) proved that SFVS-C can be solved in $\mathcal{O}^{*}(2^{k})$ time, slightly improving the best result $\mathcal{O}^{*}(2.076^{k})$ for 3-Hitting Set. In this paper, we break the "$2^{k}$-barrier" for SFVS-C by giving an $\mathcal{O}^{*}(1.820^{k})$-time algorithm. Our algorithm uses reduction and branching rules based on the Dulmage-Mendelsohn decomposition and a divide-and-conquer method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源