论文标题
Jenkins-Strebel差异的圆周表面
The surface of circumferences for Jenkins-Strebel differentials
论文作者
论文摘要
詹金斯 - 斯特雷贝尔差异存在在黎曼表面上存在一些问题。其中之一是找到一个詹金斯 - strebel差速器,其特征环域已将正数作为其周长,对于任何固定的riemann表面和环域的核心曲线。但是,对于某些给定的下面表面,核心曲线和正数可能不存在该解决方案。在本文中,我们研究了这种解决方案的存在。我们的方法是使用圆周表面,这取决于詹金斯 - 斯特雷贝尔差异的极端问题。我们可以看到詹金斯 - 斯特雷贝尔差异的特征环域的变性。此外,当基础riemann表面变化时,我们还考虑表面的行为。
There are some existence problems of Jenkins-Strebel differentials on a Riemann surface. The one of them is to find a Jenkins-Strebel differential whose characteristic ring domains have given positive numbers as their circumferences, for any fixed underlying Riemann surface and core curves of the ring domains. However, the solution may not exist for some given underlying surface, core curves, and positive numbers. In this paper, we investigate the existence of such the solutions. Our method is to use the surface of circumferences, which is determined by the extremal problem for Jenkins-Strebel differentials. We can see degenerations of the characteristic ring domains of Jenkins-Strebel differentials by the surface. Moreover, we also consider the behavior of the surface when the underlying Riemann surface varies.