论文标题
强化学习用于预测交通事故
Reinforcement Learning for Predicting Traffic Accidents
论文作者
论文摘要
随着对自动驾驶的需求增加,确保安全至关重要。使用深度学习方法进行安全安全性的早期事故预测最近引起了很多关注。在此任务中,以仪表板视频为输入,早期事故预测和驾驶员应在哪里确定位置的观点。我们建议在此事故预测平台上首次利用双重演员和正规评论家(DARC)方法。我们从DARC获得了灵感,因为它目前是适合事故预期的连续动作空间的最先进的增强学习(RL)模型。结果表明,通过利用DARC,我们可以平均进行5 \%的预测,同时与现有方法相比,可以改善多个精确度指标。结果表明,使用我们的基于RL的问题配方可能会大大提高自动驾驶的安全性。
As the demand for autonomous driving increases, it is paramount to ensure safety. Early accident prediction using deep learning methods for driving safety has recently gained much attention. In this task, early accident prediction and a point prediction of where the drivers should look are determined, with the dashcam video as input. We propose to exploit the double actors and regularized critics (DARC) method, for the first time, on this accident forecasting platform. We derive inspiration from DARC since it is currently a state-of-the-art reinforcement learning (RL) model on continuous action space suitable for accident anticipation. Results show that by utilizing DARC, we can make predictions 5\% earlier on average while improving in multiple metrics of precision compared to existing methods. The results imply that using our RL-based problem formulation could significantly increase the safety of autonomous driving.