论文标题
$ C_1 $ - 球形界的正式小组法的精确性
Landweber exactness of the formal group law in $c_1$-spherical bordism
论文作者
论文摘要
我们描述了系数环$ w^*(pt)= \ varomega_w^*$的$ c_1 $ -spherical bordism理论的结构。我们证明,对于任何$ su $ biinear乘法,理论的正式组$ w^*$都是landweber的。另外,我们还表明,在倒置了$ \数学fermat素数之后,存在局部理论的复杂方向$ w^*[\ MATHCAL P^{ - 1}] $,使得相应正式组定律的系数生成了整个系数环$ \ VAROME $ \ VAROMEGA_W^*[\ MATHC p^^$}
We describe the structure of the coefficient ring $W^*(pt)=\varOmega_W^*$ of the $c_1$-spherical bordism theory for an arbitrary $SU$-bilinear multiplication. We prove that for any $SU$-bilinear multiplication the formal group of the theory $W^*$ is Landweber exact. Also we show that after inverting the set $\mathcal P$ of Fermat primes there exists a complex orientation of the localized theory $W^*[\mathcal P^{-1}]$ such that the coefficients of the corresponding formal group law generate the whole coefficient ring $\varOmega_W^*[\mathcal P^{-1}]$.