论文标题

优化第1节以下定时循环的实时表演

Optimizing Real-Time Performances for Timed-Loop Racing under F1TENTH

论文作者

Gupta, Nitish, Wilson, Kurt, Guo, Zhishan

论文摘要

自动驾驶赛车中的运动计划和控制是由于高速和动态而导致的最具挑战性和关键性的任务之一。尽管存在严格的延迟要求,但由于板上嵌入式处理单元的资源限制,低级控制节点有望高度优化。这些保证可以在应用级别提供,例如使用ROS2的实时执行者。但是,由于许多现代控制算法(例如模型预测控制)依赖于解决每次迭代的复杂在线优化问题,因此性能远非令人满意的。在本文中,我们提出了一种简单而有效的多线程技术,以优化用于资源受限的自主赛车平台的在线控制算法的吞吐量。我们通过维护系统的工作线程池并并行解决优化问题来实现这一目标,从而通过减少控制输入命令之间的延迟来改善系统性能。我们使用模型预测性轮廓控制(MPCC)算法在NVIDIA的Xavier AGX平台上进一步证明了我们方法的有效性。

Motion planning and control in autonomous car racing are one of the most challenging and safety-critical tasks due to high speed and dynamism. The lower-level control nodes are expected to be highly optimized due to resource constraints of onboard embedded processing units, although there are strict latency requirements. Some of these guarantees can be provided at the application level, such as using ROS2's Real-Time executors. However, the performance can be far from satisfactory as many modern control algorithms (such as Model Predictive Control) rely on solving complicated online optimization problems at each iteration. In this paper, we present a simple yet effective multi-threading technique to optimize the throughput of online-control algorithms for resource-constrained autonomous racing platforms. We achieve this by maintaining a systematic pool of worker threads solving the optimization problem in parallel which can improve the system performance by reducing latency between control input commands. We further demonstrate the effectiveness of our method using the Model Predictive Contouring Control (MPCC) algorithm running on Nvidia's Xavier AGX platform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源