论文标题
关于优化公共部门决策的收益与成本比率
On the Optimization of Benefit to Cost Ratios for Public Sector Decision Making
论文作者
论文摘要
公共部门的决策集中在为共同利益提供资源和服务方面,强调了一系列广泛的目标,例如公平和效率,超出了即时短期回报,以反映社会和公共受益人的更广泛的关心。成本效益分析是公共部门中普遍的决策框架,通常使用收益比(BCR)比较可行的替代方案,但是没有系统的框架来评估除了无所事事的现状以外的许多替代方案。我们提出了一个新的框架,以最大限度地提高BCR,以实现公共部门的决策,并寻求每个边际部署能力的最大改善。该框架需要通过(约束)决策变量来表示的现状,通常适用且适用于广泛的决策环境,涉及最大化BCR的资源部署。我们证明了我们的框架在纽约市逃亡和无家可归的青年庇护所系统的引人入胜的案例研究中的适用性,这是一个很高的社会需求。我们将这个问题表示为混合整数线性分数程序(MILFP),并采用了Dinkelbach的算法,该算法将MILFP转换为一系列线性化的混合构成优化问题,从而使我们的方法可用于相当大的问题实例。我们基于优化的算法框架产生了数据知识的建议,以制定纽约市庇护所扩展决策,以更好地为失控和无家可归的青年服务,并概括以揭示管理洞察以优化BCR。更广泛地说,我们的算法决策框架可以在多个潜在约束之间进行迭代和比较,从而确保行动远离现状,从而有效评估边际部署其他资源。
Decision making in the public sector centers on delivering resources and services for the common good, emphasizing an expansive set of objectives such as equity and efficiency, beyond immediate short term returns to reflect the broader cares of society and public beneficiaries. Cost-benefit analysis is a prevailing decision-making framework in the public sector that often uses the benefit to cost ratio (BCR) to compare viable alternatives, yet no systematic framework exists for evaluating many alternatives beyond the status quo of doing nothing. We propose a new framework to maximize the BCR for public sector decisions, seeking the largest improvement per marginal deployment of capacity. Requiring a status quo representable through (constrained) decision variables, the framework is generally applicable and useful to a broad set of decision contexts that involve maximizing the BCR for marginal deployments of resources. We demonstrate the applicability of our framework on a compelling case study for the New York City runaway and homeless youth shelter system, an area of high societal need. We represent this problem as a mixed integer linear fractional program (MILFP) and employ Dinkelbach's algorithm that converts the MILFP to a series of linearized mixed-integer optimization problems, making our approach tractable for fairly large problem instances. Our optimization-based algorithmic framework yields data-informed recommendations for making New York City shelter expansion decisions to better serve runaway and homeless youth, and generalizes to reveal managerial insights for optimizing the BCR. More broadly, our algorithmic decision making framework allows for iteration and comparison across multiple potential constraints ensuring action away from the status quo, thereby empowering effective assessment of marginal deployment of additional resources.