论文标题
离散的对称性和运算符的有效计数
Discrete symmetries and Efficient Counting of Operators
论文作者
论文摘要
我们提出了装饰(“运算符的离散和有效计数”),这是希尔伯特系列的实现,以列举具有smeft的eft的转向式运算符,并具有对称组,通常在风味和BSM物理学中发现。 DECO可以容纳具有任意数字和组合组组合的EFT,以及离散组的S4,A4和Zn,以及具有剩余全球电荷的U(1)组(以及这些组最重要的表示)。该程序是高度模块化的,可以轻松地扩展到其他组和/或表示。我们通过使用它在文献中进行EFT的EFT的旋转操作员群来证明DECO的设计案例,这使我们能够在广泛使用的中微子群众模型中识别缺失的操作员并讨论该操作员的影响。
We present DECO ("Discrete and Efficient Counting of Operators"), an implementation of the Hilbert Series to enumerate subleading operator bases for SMEFT-like EFTs with symmetry groups as typically found in flavour and BSM physics. DECO can accommodate EFTs with arbitrary numbers and combinations of the SM gauge groups, as well as the discrete groups S4, A4, and Zn, and U(1) groups with residual global charge (and these groups' most important representations). The program is highly modular and can easily be extended to additional groups and/or representations. We demonstrate the design cases for DECO by using it to cross-check subleading operator bases of EFTs in the literature, which allows us to identify a missing operator in a widely used model for the neutrino masses and discuss said operator's impact.