论文标题

围环捕虫的环境视觉bev-bev-tocception for Vacret停车:数据集,基线和失真不敏感的多任务框架

Surround-view Fisheye BEV-Perception for Valet Parking: Dataset, Baseline and Distortion-insensitive Multi-task Framework

论文作者

Wu, Zizhang, Gan, Yuanzhu, Li, Xianzhi, Wu, Yunzhe, Wang, Xiaoquan, Xu, Tianhao, Wang, Fan

论文摘要

周围的视觉鱼眼在代客停车场景下的感知是基本的,对于自动驾驶而言至关重要。停车场的环境条件与常见的公共数据集的性能不同,例如不完美的光和不透明度,这对感知表现产生了重大影响。基于公共数据集的大多数现有网络可能会在这些代客停车场景上概括次优的结果,这也受鱼眼扭曲的影响。在本文中,我们介绍了一个名为Fisheye停车数据集(FPD)的新的大规模Fisheye数据集,以促进研究以处理各种现实世界环境景观箱。值得注意的是,我们编译的FPD具有出色的特征,适用于不同的环绕视感知任务。此外,我们还提出了实时不敏感的多任务框架Fisheye感知网络(FPNET),该框架通过增强Fisheye失真操作和多任务轻量级设计来改善周围视图Fisheye Bev感知。广泛的实验验证了我们方法的有效性和数据集的特殊概括性。

Surround-view fisheye perception under valet parking scenes is fundamental and crucial in autonomous driving. Environmental conditions in parking lots perform differently from the common public datasets, such as imperfect light and opacity, which substantially impacts on perception performance. Most existing networks based on public datasets may generalize suboptimal results on these valet parking scenes, also affected by the fisheye distortion. In this article, we introduce a new large-scale fisheye dataset called Fisheye Parking Dataset(FPD) to promote the research in dealing with diverse real-world surround-view parking cases. Notably, our compiled FPD exhibits excellent characteristics for different surround-view perception tasks. In addition, we also propose our real-time distortion-insensitive multi-task framework Fisheye Perception Network (FPNet), which improves the surround-view fisheye BEV perception by enhancing the fisheye distortion operation and multi-task lightweight designs. Extensive experiments validate the effectiveness of our approach and the dataset's exceptional generalizability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源