论文标题
利用伪标签的完整性和不确定性,以进行弱监督视频异常检测
Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly Supervised Video Anomaly Detection
论文作者
论文摘要
弱监督的视频异常检测旨在仅使用视频级标签来识别视频中的异常事件。最近,两阶段的自我训练方法通过使用这些标签的自我生成伪标签和自我注明异常得分实现了显着改善。由于伪标签起着至关重要的作用,我们通过利用完整性和不确定性特性来提出增强框架以进行有效的自我训练。具体而言,我们首先设计一个多头的分类模块(每个头部用作分类器),具有多样性损失,以最大程度地提高跨头的预测伪标签的分布差异。这鼓励生成的伪标签涵盖尽可能多的异常事件。然后,我们设计了一种迭代不确定性伪标签改进策略,该策略不仅改进了初始伪标签,还可以改善所需分类器在第二阶段获得的更新的标签。广泛的实验结果表明,该方法对UCF犯罪,TAD和XD-Violence基准数据集的最新方法进行了有利的作用。
Weakly supervised video anomaly detection aims to identify abnormal events in videos using only video-level labels. Recently, two-stage self-training methods have achieved significant improvements by self-generating pseudo labels and self-refining anomaly scores with these labels. As the pseudo labels play a crucial role, we propose an enhancement framework by exploiting completeness and uncertainty properties for effective self-training. Specifically, we first design a multi-head classification module (each head serves as a classifier) with a diversity loss to maximize the distribution differences of predicted pseudo labels across heads. This encourages the generated pseudo labels to cover as many abnormal events as possible. We then devise an iterative uncertainty pseudo label refinement strategy, which improves not only the initial pseudo labels but also the updated ones obtained by the desired classifier in the second stage. Extensive experimental results demonstrate the proposed method performs favorably against state-of-the-art approaches on the UCF-Crime, TAD, and XD-Violence benchmark datasets.