论文标题
e $ $(n)$模型的Epsilon扩展具有共形场理论的线路缺陷
The epsilon expansion of the O$(N)$ model with line defect from conformal field theory
论文作者
论文摘要
我们采用Rychkov和Tan的公理框架来研究以$(4-ε)$ dimensions的线路缺陷的关键o $ $(n)$ vector模型。我们假设固定点是通过缺陷共形场理论来描述的,并表明缺陷耦合到散装场的临界值是唯一固定的,而无需诉诸于图表计算。我们还通过公理方法研究了各种缺陷局部操作员,其中相关函数的分析性在确定缺陷复合算子的整形尺寸方面起着至关重要的作用。在所有情况下,包括具有操作员混合的操作员,我们都会重现通过扰动计算获得的主要异常维度。
We employ the axiomatic framework of Rychkov and Tan to investigate the critical O$(N)$ vector model with a line defect in $(4-ε)$ dimensions. We assume the fixed point is described by defect conformal field theory and show that the critical value of the defect coupling to the bulk field is uniquely fixed without resorting to diagrammatic calculations. We also study various defect localized operators by the axiomatic method, where the analyticity of correlation functions plays a crucial role in determining the conformal dimensions of defect composite operators. In all cases, including operators with operator mixing, we reproduce the leading anomalous dimensions obtained by perturbative calculations.