论文标题
使用Meerkat望远镜搜索七个二进制脉冲星的shapiro延迟
Searches for Shapiro delay in seven binary pulsars using the MeerKAT telescope
论文作者
论文摘要
二进制系统中毫秒脉冲星的精确时机使观察者能够检测到时空曲率引起的相对论shapiro延迟。在有利对齐的情况下,这可以将约束放在组件质量和系统方向上。 Here we present the results of timing campaigns on seven binary millisecond pulsars observed with the 64-antenna MeerKAT radio telescope that show evidence of Shapiro delay: PSRs~J0101$-$6422, J1101$-$6424, J1125$-$6014, J1514$-$4946, J1614$-$2230, J1732 $ - $ 5049和J1909 $ - $ 3744。在所有系统中都发现了Shapiro延迟的证据,对于三个方向和数据质量,可以对其轨道倾斜和组分质量产生强大的限制。对于PSRS〜J1125 $ - $ 6014,J1614 $ - $ 2230和J1909 $ - $ 3744,我们确定Pulsar Masses为$ M _ {\ rm P} = 1.68 \ pm 0.17 \, m _ {\ odot}} $和$ 1.45 \ pm 0.03 \,{\ rm m _ {\ odot}} $,并且伴随群众为$ m _ {\ rm c} = 0.33 \ pm pm 0.02 \ pm 0.02 \,{ {\ rm m _ {\ odot}} $和$ 0.205 \ pm 0.003 \,{\ rm m _ {\ odot}} $。这提供了PSR〜J1614 $ - $ 2230的质量的第一个独立确认,这是最知名的质量之一。 Shapiro延迟量为PSRS〜J0101 $ - $ 6422,J1101 $ - $ 6424,J1514 $ - $ 4946和J1732 $ - $ 5049仅较弱,无法提供有趣的组件质量限制。尽管常规定时了大量毫秒的脉冲星,但相对较少的通过Shapiro延迟具有准确的质量。我们使用模拟表明这是可以预期的,并为观察者提供了一个公式,以评估如何确定脉冲星质量的准确性。我们还讨论了观察到的脉冲星伴侣质量与自旋时期之间的相关性,以及回收的脉冲星质量与其伴侣质量之间的抗相关性。
Precision timing of millisecond pulsars in binary systems enables observers to detect the relativistic Shapiro delay induced by space time curvature. When favourably aligned, this enables constraints to be placed on the component masses and system orientation. Here we present the results of timing campaigns on seven binary millisecond pulsars observed with the 64-antenna MeerKAT radio telescope that show evidence of Shapiro delay: PSRs~J0101$-$6422, J1101$-$6424, J1125$-$6014, J1514$-$4946, J1614$-$2230, J1732$-$5049, and J1909$-$3744. Evidence for Shapiro delay was found in all of the systems, and for three the orientations and data quality enabled strong constraints on their orbital inclinations and component masses. For PSRs~J1125$-$6014, J1614$-$2230 and J1909$-$3744, we determined pulsar masses to be $M_{\rm p} = 1.68\pm 0.17 \, {\rm M_{\odot}} $, $1.94\pm 0.03 \, {\rm M_{\odot}} $ and $1.45 \pm 0.03 \, {\rm M_{\odot}}$, and companion masses to be $M_{\rm c} = 0.33\pm 0.02 \, {\rm M_{\odot}} $, $0.495\pm 0.005 \, {\rm M_{\odot}} $ and $0.205 \pm 0.003 \, {\rm M_{\odot}}$, respectively. This provides the first independent confirmation of PSR~J1614$-$2230's mass, one of the highest known. The Shapiro delays measured for PSRs~J0101$-$6422, J1101$-$6424, J1514$-$4946, and J1732$-$5049 were only weak, and could not provide interesting component mass limits. Despite a large number of millisecond pulsars being routinely timed, relatively few have accurate masses via Shapiro delays. We use simulations to show that this is expected, and provide a formula for observers to assess how accurately a pulsar mass can be determined. We also discuss the observed correlation between pulsar companion masses and spin period, and the anti-correlation between recycled pulsar mass and their companion masses.