论文标题

量子启发的近似值限制满意度问题

Quantum-Inspired Approximations to Constraint Satisfaction Problems

论文作者

Lanham, S. Andrew

论文摘要

约束满意度问题的两个对比算法范例是相邻配置的连续局部探索与使用有关该问题的全局信息生成新配置的局部探索(例如,近似于概率分布的边缘分布的边缘,而概率分布的边缘是均匀的,而不是满足配置)。本文介绍了后一个框架的新算法,最终通过使用布尔傅里叶分析中的方法产生满足配置的估计值。该方法广泛地受到量子振幅扩增算法的启发,因为它最大程度地增加了近似函数的幅度,而不是令人满意的配置。我们证明,可以在类似于量子测量的过程中检索令人满意的溶液,从而在傅立叶结构域中通过稀疏性有效,并使用这种新颖的近似值提出了完整的求解器构造。改进策略中的自由邀请了进化计算框架中设计求解器的进一步机会。结果表明,针对布尔值满意度(SAT)问题的本地求解者的竞争性能,鼓励了未来的工作,以理解布尔傅里叶分析和约束满意度之间的联系。

Two contrasting algorithmic paradigms for constraint satisfaction problems are successive local explorations of neighboring configurations versus producing new configurations using global information about the problem (e.g. approximating the marginals of the probability distribution which is uniform over satisfying configurations). This paper presents new algorithms for the latter framework, ultimately producing estimates for satisfying configurations using methods from Boolean Fourier analysis. The approach is broadly inspired by the quantum amplitude amplification algorithm in that it maximally increases the amplitude of the approximation function over satisfying configurations given sequential refinements. We demonstrate that satisfying solutions may be retrieved in a process analogous to quantum measurement made efficient by sparsity in the Fourier domain, and present a complete solver construction using this novel approximation. Freedom in the refinement strategy invites further opportunities to design solvers in an evolutionary computing framework. Results demonstrate competitive performance against local solvers for the Boolean satisfiability (SAT) problem, encouraging future work in understanding the connections between Boolean Fourier analysis and constraint satisfaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源