论文标题

学习图搜索启发式学

Learning Graph Search Heuristics

论文作者

Pándy, Michal, Qiu, Weikang, Corso, Gabriele, Veličković, Petar, Ying, Rex, Leskovec, Jure, Liò, Pietro

论文摘要

在图中搜索两个节点之间的路径是计算机科学中最深思,最根本的问题之一。在诸如机器人技术,AI或生物学之类的众多领域中,从业者开发搜索启发式方法,以加速其探索算法。但是,根据给定用例的问题和结构,手动设计启发式方法是一个艰辛而复杂的过程。在这里,我们介绍了Phil(模仿学习的路径启发式),一种新型的神经架构和一种培训算法,用于从数据中通过利用模仿学习和图形表示学习的最新进展来从数据中发现图形搜索和导航启发式方法。在训练时,我们汇总了搜索轨迹和最短路径距离的数据集,我们使用该数据集通过探路过程的步骤,使用反向传播来训练专门的基于图形神经网络的启发性函数。我们的启发式功能学习图形嵌入对于推断节点距离,在恒定时间内独立于图形大小的嵌入,并且可以在测试时轻松地将其合并到诸如a*之类的算法中。实验表明,与基准数据集中的最先进方法相比,Phil可以平均将探索的节点数量减少58.5%,可以直接应用于从生物网络到道路网络的各种图表,并允许在时间临界机器人域中快速规划。

Searching for a path between two nodes in a graph is one of the most well-studied and fundamental problems in computer science. In numerous domains such as robotics, AI, or biology, practitioners develop search heuristics to accelerate their pathfinding algorithms. However, it is a laborious and complex process to hand-design heuristics based on the problem and the structure of a given use case. Here we present PHIL (Path Heuristic with Imitation Learning), a novel neural architecture and a training algorithm for discovering graph search and navigation heuristics from data by leveraging recent advances in imitation learning and graph representation learning. At training time, we aggregate datasets of search trajectories and ground-truth shortest path distances, which we use to train a specialized graph neural network-based heuristic function using backpropagation through steps of the pathfinding process. Our heuristic function learns graph embeddings useful for inferring node distances, runs in constant time independent of graph sizes, and can be easily incorporated in an algorithm such as A* at test time. Experiments show that PHIL reduces the number of explored nodes compared to state-of-the-art methods on benchmark datasets by 58.5\% on average, can be directly applied in diverse graphs ranging from biological networks to road networks, and allows for fast planning in time-critical robotics domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源