论文标题

群体理论中平滑的立方体

Smooth cuboids in group theory

论文作者

Maglione, Joshua, Stanojkovski, Mima

论文摘要

可以用$ 3 \ times 3 $线性形式的矩阵来识别光滑的立方体,并在字段$ k $中具有系数,其决定符描述了投射平面中平滑的立方体。对于每个这样的矩阵,一个人都可以将组计划与$ k $相关联。我们根据它们的伴随代数产生这些组的同构不变,这也提供了有关其最大Abelian亚组数量的信息。此外,我们从椭圆曲线的同构方面给出了组的同构类型的表征,还描述了自多态群体。最后,我们将结果应用于确定自动形态群体的确定,以及对以这种方式产生的有限$ p $ - 级$ 2 $和指数$ p $的同构测试。

A smooth cuboid can be identified with a $3\times 3$ matrix of linear forms, with coefficients in a field $K$, whose determinant describes a smooth cubic in the projective plane. To each such matrix one can associate a group scheme over $K$. We produce isomorphism invariants of these groups in terms of their adjoint algebras, which also give information on the number of their maximal abelian subgroups. Moreover, we give a characterization of the isomorphism types of the groups in terms of isomorphisms of elliptic curves and also give a description of the automorphism group. We conclude by applying our results to the determination of the automorphism groups and isomorphism testing of finite $p$-groups of class $2$ and exponent $p$ arising in this way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源