论文标题
集体coset一夫一妻制游戏,并应用于独立于设备的连续变量QKD
Group coset monogamy games and an application to device-independent continuous-variable QKD
论文作者
论文摘要
我们开发了最近引入的子空间COSET州一夫一妻制游戏的扩展[Coladangelo,Liu,Liu和Zhandry;对一般组固定状态的加密“ 21”,它们是对量子一键板的组理论概括的子组的元素的均匀叠加。我们对由子组coset状态构建的一夫一妻制游戏的胜利概率进行了限制,该游戏适用于各种有限和无限群体。为了研究无限群体案例,我们使用并进一步开发了一种衡量理论形式主义,使我们能够表达可连续变化的测量值,作为概率测量的操作员可评估的概括。 我们将绑定的一夫一妻制游戏应用于各种与身体相关的组,以连续变化的模式以及多原子分子的旋转状态实现游戏的实现。在特定的组空间和亚组组合的情况下,我们获得了明确的强界。作为一个应用程序,我们提供了针对一般连贯攻击的挤压状态连续变量量子键分配协议的单个方向独立安全性的第一个证明。
We develop an extension of a recently introduced subspace coset state monogamy-of-entanglement game [Coladangelo, Liu, Liu, and Zhandry; Crypto'21] to general group coset states, which are uniform superpositions over elements of a subgroup to which has been applied a group-theoretic generalization of the quantum one-time pad. We give a general bound on the winning probability of a monogamy game constructed from subgroup coset states that applies to a wide range of finite and infinite groups. To study the infinite-group case, we use and further develop a measure-theoretic formalism that allows us to express continuous-variable measurements as operator-valued generalizations of probability measures. We apply the monogamy game bound to various physically relevant groups, yielding realizations of the game in continuous-variable modes as well as in rotational states of a polyatomic molecule. We obtain explicit strong bounds in the case of specific group-space and subgroup combinations. As an application, we provide the first proof of one sided-device independent security of a squeezed-state continuous-variable quantum key distribution protocol against general coherent attacks.