论文标题

计算品种的线性截面:量子纠缠,张量分解及其他

Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

论文作者

Johnston, Nathaniel, Lovitz, Benjamin, Vijayaraghavan, Aravindan

论文摘要

我们研究了在$ \ mathbb {f}^n $与给定线性子空间中的任意圆锥变量相交中查找元素的问题(其中$ \ mathbb {f} $可以是真实或复杂的字段)。这个问题捕获了在多种选择的不同选择下,捕获了一个丰富的算法问题。由等级1矩阵组成的品种的特殊情况已经与量子信息理论和张量分解等不同领域的核心问题建立了牢固的联系。在最坏的情况下,即使对于各种等级-1矩阵,该问题也是NP危险的。 令人惊讶的是,尽管这些硬度结果是,我们开发了一种算法,该算法可以为“典型”子空间有效地解决此问题。在这里,子空间$ u \ subseteq \ mathbb {f}^n $通常是特定维度选择的,可能会带有其中包含的多种元素。我们的主要结果是保证我们的算法在对该品种的一些轻微的非平稳化假设下,恢复了该品种中$ U $的所有元素。作为推论,我们将获得以下新结果: $ \ bullet $ $多项式时间算法,用于量子纠缠中的几个纠缠子空间问题,包括确定子空间的r键入,完整的纠缠和真正的纠缠。尽管所有这些问题在最坏的情况下都是NP - hard,但我们的算法在多项式时间内将它们求解,以使尺寸的通用子空间达到最大最大值的常数倍数。 $ \ bullet $唯一性结果和多项式时间算法保证了一系列广泛的低级分解问题的通用实例,这些问题超出了张量分解。在这里,我们恢复了$ \ sum_ {i = 1}^r v_i \ otimes w_i $的表单的分解,其中$ v_i $是品种$ x $的元素。这意味着即使在张量分解的特殊情况下,新的唯一性结果和通用保证也可以保证。

We study the problem of finding elements in the intersection of an arbitrary conic variety in $\mathbb{F}^n$ with a given linear subspace (where $\mathbb{F}$ can be the real or complex field). This problem captures a rich family of algorithmic problems under different choices of the variety. The special case of the variety consisting of rank-1 matrices already has strong connections to central problems in different areas like quantum information theory and tensor decompositions. This problem is known to be NP-hard in the worst case, even for the variety of rank-1 matrices. Surprisingly, despite these hardness results we develop an algorithm that solves this problem efficiently for "typical" subspaces. Here, the subspace $U \subseteq \mathbb{F}^n$ is chosen generically of a certain dimension, potentially with some generic elements of the variety contained in it. Our main result is a guarantee that our algorithm recovers all the elements of $U$ that lie in the variety, under some mild non-degeneracy assumptions on the variety. As corollaries, we obtain the following new results: $\bullet$ Polynomial time algorithms for several entangled subspaces problems in quantum entanglement, including determining r-entanglement, complete entanglement, and genuine entanglement of a subspace. While all of these problems are NP-hard in the worst case, our algorithm solves them in polynomial time for generic subspaces of dimension up to a constant multiple of the maximum possible. $\bullet$ Uniqueness results and polynomial time algorithmic guarantees for generic instances of a broad class of low-rank decomposition problems that go beyond tensor decompositions. Here, we recover a decomposition of the form $\sum_{i=1}^R v_i \otimes w_i$, where the $v_i$ are elements of the variety $X$. This implies new uniqueness results and genericity guarantees even in the special case of tensor decompositions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源