论文标题

雷达:用于网络流量分析和恶意软件检测的基于TTP的可扩展,可解释且有效的系统

RADAR: A TTP-based Extensible, Explainable, and Effective System for Network Traffic Analysis and Malware Detection

论文作者

Sharma, Yashovardhan, Birnbach, Simon, Martinovic, Ivan

论文摘要

网络分析和机器学习技术已被广泛应用于构建恶意软件检测系统。尽管这些系统取得了令人印象深刻的结果,但它们通常是$(i)$不可扩展的,是整体上的,对它们设计的特定任务进行了很好的调整,但很难适应和/或扩展到其他设置,$(ii)$不可解释,是内在复杂性的黑匣子,其内部复杂性使人们无法发现其根源的结果,从而进一步分析了质疑的质疑。在本文中,我们介绍了一种可扩展且可解释的系统,可利用流行的TTP(策略,技术和程序)本体论的对手行为的本体论,以使用网络流量对恶意行为进行明确的识别和分类。我们在一个非常大的数据集中评估了雷达,其中包括2,286,907个恶意和良性样本,总计84,792,452网络流。实验分析证实,可以有效利用所提出的方法:雷达检测恶意软件的能力与其他最先进的非解剖系统的功能相当。据我们所知,Radar是第一个基于TTP的恶意软件检测系统,该系统使用机器学习,同时可扩展和解释。

Network analysis and machine learning techniques have been widely applied for building malware detection systems. Though these systems attain impressive results, they often are $(i)$ not extensible, being monolithic, well tuned for the specific task they have been designed for but very difficult to adapt and/or extend to other settings, and $(ii)$ not interpretable, being black boxes whose inner complexity makes it impossible to link the result of detection with its root cause, making further analysis of threats a challenge. In this paper we present RADAR, an extensible and explainable system that exploits the popular TTP (Tactics, Techniques, and Procedures) ontology of adversary behaviour described in the industry-standard MITRE ATT\&CK framework in order to unequivocally identify and classify malicious behaviour using network traffic. We evaluate RADAR on a very large dataset comprising of 2,286,907 malicious and benign samples, representing a total of 84,792,452 network flows. The experimental analysis confirms that the proposed methodology can be effectively exploited: RADAR's ability to detect malware is comparable to other state-of-the-art non-interpretable systems' capabilities. To the best of our knowledge, RADAR is the first TTP-based system for malware detection that uses machine learning while being extensible and explainable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源