论文标题

在$ 6D $中的有效动作的两环差异上,$ {\ cal n} =(1,1)$ sym理论

On two-loop divergences of effective action in $6D$, ${\cal N}=(1,1)$ SYM theory

论文作者

Buchbinder, I. L., Ivanov, E. A., Merzlikin, B. S., Stepanyantz, K. V.

论文摘要

我们研究了$ 6D,{\ cal n} =(1,1)$ supersymmetric量规理论以$ {\ cal n} =(1,0)$谐波超级空间进行研究。涉及$ 6D的所有字段,{\ cal n} =(1,1)$ supermultiplet的脱壳有效动作是由谐波超级场景背景方法构建的,该方法可确保明显的量规协方差和明显​​的$ {\ cal n} =(1,0)$ supersymmetry。我们分析了依赖于仪表和超强超级场的外壳差异,并认为分歧的规格不变性与谐波中的非局部性一致。对有效动作的两环贡献由带有背景量规和超级超级领域的谐波超图给出。该过程的开发是用超级尺寸正则化的两环超图中的谐波依赖性超驱动器进行操作。我们明确计算量规和超混合差异为$ \ frac {1} {{\ varepsilon}^2} $的系数,并证明相应的表达式在谐波中是非局部性的。

We study the off-shell structure of the two-loop effective action in $6D, {\cal N}=(1,1)$ supersymmetric gauge theories formulated in ${\cal N}=(1,0)$ harmonic superspace. The off-shell effective action involving all fields of $6D, {\cal N}=(1,1)$ supermultiplet is constructed by the harmonic superfield background field method, which ensures both manifest gauge covariance and manifest ${\cal N}=(1,0)$ supersymmetry. We analyze the off-shell divergences dependent on both gauge and hypermultiplet superfields and argue that the gauge invariance of the divergences is consistent with the non-locality in harmonics. The two-loop contributions to the effective action are given by harmonic supergraphs with the background gauge and hypermultiplet superfields. The procedure is developed to operate with the harmonic-dependent superpropagators in the two-loop supergraphs within the superfield dimensional regularization. We explicitly calculate the gauge and the hypermultiplet-mixed divergences as the coefficients of $\frac{1}{{\varepsilon}^2}$ and demonstrate that the corresponding expressions are non-local in harmonics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源