论文标题

平均曲率流量是梯度流吗?

Is Mean Curvature Flow a Gradient Flow?

论文作者

Huang, Zhonggan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

It is well-known that the mean curvature flow is a formal gradient flow of the perimeter functional. However, by the work of Michor and Mumford [7,8], the formal Riemannian structure that is compatible with the gradient flow structure induces a degenerate metric on the space of hypersurfaces. It is then natural to ask whether there is a nondegenerate metric space of hypersurfaces, on which the mean curvature flow admits a gradient flow structure. In this paper we study the mean curvature flow on two nondegenerate metric spaces of simple closed plane curves: the uniformness-preserving metric structure proposed by Shi and Vorotnikov [11] and the curvature-weighted structure proposed by Michor and Mumford [8], and prove that the mean curvature flow is not a gradient flow in either of the spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源