论文标题
部分可观测时空混沌系统的无模型预测
Spatio-Temporal Super-Resolution Data Assimilation (SRDA) Utilizing Deep Neural Networks with Domain Generalization
论文作者
论文摘要
最近,深度学习引起了大气和海洋科学的关注,因为它的潜力提高了数值模拟的准确性或降低计算成本。超分辨率就是一种从低分辨率数据中推断出高分辨率推断的技术。本文提出了一种新方案,称为四维超分辨率数据同化(4D-SRDA)。该框架使用基于物理学的模型来计算从低分辨率模拟的系统的时间演变,而训练有素的神经网络同时执行数据同化和时空超级分辨率。在没有集合成员的情况下使用低分辨率模拟可以减少在高时空分辨率下获得推论的计算成本。在4D-SRDA中,基于物理学的模拟和神经网络推断交替执行,可能导致域移位,即训练数据和测试数据之间存在统计差异,尤其是在离线培训中。域移位可以降低推理的准确性。为了减轻这种风险,我们开发了超分辨率混音(SR-MIXUP) - 域概括的数据增强方法。 SR-Mixup创建了随机采样输入的线性组合,从而产生了合成数据,其分布与原始数据不同。使用理想化的压缩海洋喷气机对所提出的方法进行了验证。结果表明,4D-SRDA和SR混合的组合对于鲁棒推理循环有效。这项研究突出了数据同化领域的超分辨率和领域将来技术的潜力,尤其是对于基于物理和数据驱动模型的整合而言。
Deep learning has recently gained attention in the atmospheric and oceanic sciences for its potential to improve the accuracy of numerical simulations or to reduce computational costs. Super-resolution is one such technique for high-resolution inference from low-resolution data. This paper proposes a new scheme, called four-dimensional super-resolution data assimilation (4D-SRDA). This framework calculates the time evolution of a system from low-resolution simulations using a physics-based model, while a trained neural network simultaneously performs data assimilation and spatio-temporal super-resolution. The use of low-resolution simulations without ensemble members reduces the computational cost of obtaining inferences at high spatio-temporal resolution. In 4D-SRDA, physics-based simulations and neural-network inferences are performed alternately, possibly causing a domain shift, i.e., a statistical difference between the training and test data, especially in offline training. Domain shifts can reduce the accuracy of inference. To mitigate this risk, we developed super-resolution mixup (SR-mixup)--a data augmentation method for domain generalization. SR-mixup creates a linear combination of randomly sampled inputs, resulting in synthetic data with a different distribution from the original data. The proposed methods were validated using an idealized barotropic ocean jet with supervised learning. The results suggest that the combination of 4D-SRDA and SR-mixup is effective for robust inference cycles. This study highlights the potential of super-resolution and domain-generalization techniques, in the field of data assimilation, especially for the integration of physics-based and data-driven models.