论文标题
带有Le'Vy路径的分数量子场
Fractional quantum fields with Le'vy paths
论文作者
论文摘要
我们为量子场理论开发了一种路径积分方法,该方法是在拥有分形维度的Le'Vy飞行路径上定义的$ 1 <d_f <2 $。在标准量子场理论中,布朗轨迹的分形导致二次形式的分散关系。而Le'Vy路径将分数量子场理论带到分数分散关系。通过考虑时间的LE'VY路径,我们计算具有框边界条件的无质量标量场的状态密度。状态的密度显示至较低维度系统的行为,相应的黑体辐射具有与较低尺寸黑色体辐射的能量谱。我们在零温度下得出标量场,矢量场和旋转场运动的分数方程。他们的传播器已经计算出来。基于上述推导,我们计算LEV'Y路径中电子的一环自能源,以显示该方案如何像维度正则化一样在重新归一化中平等地工作。然而,我们发现仪表对称性阻止了狄拉克旋转路径,并证明了狄拉克纺纱球场中的这些路径引流到不稳定的电子,因此普通的布朗尼路径被Le'vy路径被克服了。虽然量规对称性允许在电磁场中进行LE'VY路径。它导致了非本地相和与电子电荷是复合量的相互作用的相互作用,而不是基本常数,它可能在物理上可以观察到。
We develop a path integral approach to quantum field theory that is defined over the paths of the Le'vy flights possessing a fractal dimension $1<d_f<2$. In standard quantum field theory, the fractality of the Brownian trajectories lead to a dispersion relation of quadric form. While the Le'vy paths lead fractional quantum field theory to a fractional dispersion relation. By considering Le'vy paths in time, we calculate density of states for a massless scalar field with box boundary condition. The density of states show behaviors dual to lower dimensional system, and the corresponding black body radiation has an energy spectrum dual to that in lower dimensional black body radiation. We derive the fractional equations of motion for scalar field, vector field and spinor field in zero temperature. Their propagators have been calculated. Based on above derivation, we calculate the one-loop self-energy of electron in Lev'y paths to show how this scheme works equally in renormalization as dimensional regularization does. Nevertheless, We found that gauge symmetry prevent Dirac spinor field from Le'vy paths and demonstrate that these paths in Dirac spinor field leds to unstable electrons, thus Le'vy paths are overcame by ordinary Brownian paths. While Le'vy paths are permitted in electromagnetic field by gauge symmetry. It led to a non-local phase and interaction with electron where electron charge is a composite quantity rather than a fundamental constant which maybe physically observable.