论文标题
概率的形状完成,通过估算分层VAE的规范因子
Probabilistic Shape Completion by Estimating Canonical Factors with Hierarchical VAE
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We propose a novel method for 3D shape completion from a partial observation of a point cloud. Existing methods either operate on a global latent code, which limits the expressiveness of their model, or autoregressively estimate the local features, which is highly computationally extensive. Instead, our method estimates the entire local feature field by a single feedforward network by formulating this problem as a tensor completion problem on the feature volume of the object. Due to the redundancy of local feature volumes, this tensor completion problem can be further reduced to estimating the canonical factors of the feature volume. A hierarchical variational autoencoder (VAE) with tiny MLPs is used to probabilistically estimate the canonical factors of the complete feature volume. The effectiveness of the proposed method is validated by comparing it with the state-of-the-art method quantitatively and qualitatively. Further ablation studies also show the need to adopt a hierarchical architecture to capture the multimodal distribution of possible shapes.