论文标题
数字感知的量子自旋模型
Quantum spin models for numerosity perception
论文作者
论文摘要
人类与脊椎动物和无脊椎动物的动物共享,感知其出生时已经存在的物品数量的能力。这种技能在整个动物界的普遍性表明,它应该在非常简单的神经元种群中出现。然而,当前的建模文献一直在努力提出一个简单的体系结构,以执行这项任务,大多数提议都表明,多层复杂的神经网络中的数字意义出现,通常需要监督的学习。我们提出了一个具有全能连接性的简单量子自旋模型,其中数字在刺激后用随机或有序的时间序列发生的许多瞬态信号在频谱中编码。我们使用从平衡的开放量子系统的理论和方法中借用的范式模拟方法,作为描述神经系统中信息处理的可能方法。我们的方法能够捕获此类系统中数字的许多知觉特征。系统隧道频率谐波时磁化光谱的频率成分随着刺激的数量而增加。每个光谱的幅度解码,采用理想观察者模型执行,表明该系统遵循韦伯定律,这是整个动物界的数字知觉的标志之一。这与众所周知的未能通过线性系统或累加器模型重现Weber定律的鲜明对比。
Humans share with animals, both vertebrates and invertebrates, the capacity to sense the number of items in their environment already at birth. The pervasiveness of this skill across the animal kingdom suggests that it should emerge in very simple populations of neurons. Current modelling literature, however, has struggled to suggest a simple architecture carrying out this task, with most proposals suggesting the emergence of number sense in multi-layered complex neural networks, and typically requiring supervised learning. We present a simple quantum spin model with all-to-all connectivity, where numerosity is encoded in the spectrum after stimulation with a number of transient signals occurring in a random or orderly temporal sequence. We use a paradigmatic simulational approach borrowed from the theory and methods of open quantum systems out of equilibrium, as a possible way to describe information processing in neural systems. Our method is able to capture many of the perceptual characteristics of numerosity in such systems. The frequency components of the magnetization spectra at harmonics of the system's tunneling frequency increase with the number of stimuli presented. The amplitude decoding of each spectrum, performed with an ideal-observer model, reveals that the system follows Weber's law, one of the hallmarks of numerosity perception across the animal kingdom. This contrasts with the well-known failure to reproduce Weber's law with linear system or accumulators models.