论文标题

粘合物

The Gluing Property

论文作者

Hayut, Yair, Poveda, Alejandro

论文摘要

我们介绍了一种新的紧凑原则,我们称之为粘合物。对于可衡量的红衣主教$κ$和Cardinal $λ$,我们说$κ$具有$λ$ - 填充属性,如果每个序列的$λ$ -Many $ -Many $κ$κ$ -Complete Ultrafters in $κ$都可以粘贴到$κ$ -Complete Extender中。我们表明,每个$κ$ -Compact Cardinal都具有$ 2^κ$ - $ luing属性,但不必要地是$(2^κ)^+$ - 胶合物。最后,我们计算了$κ$的确切一致性 - 具有$ω$的属性;这是$ O(κ)=ω_1$。

We introduce a new compactness principle which we call the gluing property. For a measurable cardinal $κ$ and a cardinal $λ$, we say that $κ$ has the $λ$-gluing property if every sequence of $λ$-many $κ$-complete ultrafilters on $κ$ can be glued into a $κ$-complete extender. We show that every $κ$-compact cardinal has the $2^κ$-gluing property, yet non-necessarily the $(2^κ)^+$-gluing property. Finally, we compute the exact consistency-strength for $κ$ to have the $ω$-gluing property; this being $o(κ)=ω_1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源