论文标题

增强具有相似性知识蒸馏的低密度基于EEG的大脑计算机界面

Enhancing Low-Density EEG-Based Brain-Computer Interfaces with Similarity-Keeping Knowledge Distillation

论文作者

Huang, Xin-Yao, Chen, Sung-Yu, Wei, Chun-Shu

论文摘要

脑电图(EEG)一直是现实世界中脑计算机接口(BCIS)的常见神经监控方式之一,因为它的非侵入性,低成本和高时间分辨率。最近,基于低密度蒙太奇的轻质和便携式脑电图可穿戴设备提高了BCI应用的便利性和可用性。但是,由于电极数量减少和低密度脑电图蒙太奇的头皮区域的覆盖率减少,EEG解码性能的丧失通常是不可避免的。为了解决这个问题,我们引入了知识蒸馏(KD),这是一种用于在神经网络模型之间传输知识/信息的学习机制,以增强低密度EEG解码的性能。我们的框架包括新提出的相似性维持(SK)教师学生KD计划,该计划鼓励低密度EEG学生模型获得样本间相似性,如接受高密度EEG数据培训的预先训练的教师模型。实验结果验证了我们的SK-KD框架在输入EEG数据的电极数量变形时,始终提高了电动构型EEG解码精度。对于常见的低密度耳机状和类似头带的蒙太奇,我们的方法在各种EEG解码模型体系结构上都优于最先进的KD方法。随着第一个KD方案用于增强脑电图解码,我们预见了拟议的SK-KD框架,以促进现实世界中低密度基于EEG的BCI的实用性。

Electroencephalogram (EEG) has been one of the common neuromonitoring modalities for real-world brain-computer interfaces (BCIs) because of its non-invasiveness, low cost, and high temporal resolution. Recently, light-weight and portable EEG wearable devices based on low-density montages have increased the convenience and usability of BCI applications. However, loss of EEG decoding performance is often inevitable due to reduced number of electrodes and coverage of scalp regions of a low-density EEG montage. To address this issue, we introduce knowledge distillation (KD), a learning mechanism developed for transferring knowledge/information between neural network models, to enhance the performance of low-density EEG decoding. Our framework includes a newly proposed similarity-keeping (SK) teacher-student KD scheme that encourages a low-density EEG student model to acquire the inter-sample similarity as in a pre-trained teacher model trained on high-density EEG data. The experimental results validate that our SK-KD framework consistently improves motor-imagery EEG decoding accuracy when number of electrodes deceases for the input EEG data. For both common low-density headphone-like and headband-like montages, our method outperforms state-of-the-art KD methods across various EEG decoding model architectures. As the first KD scheme developed for enhancing EEG decoding, we foresee the proposed SK-KD framework to facilitate the practicality of low-density EEG-based BCI in real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源