论文标题

sylvester-gallai型定理,用于复杂说明的曲霉

A Sylvester-Gallai-type theorem for complex-representable matroids

论文作者

Geelen, Jim, Kroeker, Matthew E.

论文摘要

Sylvester-Gallai定理指出,每个排名$ 3 $ $ 3 $真正的可说的Matroid都有两点线。我们证明,对于每个$ k \ ge 2 $,每个具有排名至少$ 4^{k-1} $的复杂代表性的Matroid的排名$ k $ flat,恰好是$ k $。对于$ k = 2 $,这是由于凯利(Kelly)而在证明中使用的众所周知的结果。 Barak,Dvir,Wigderson和Yehudayoff较早证明了类似的结果,后来由DVIR,SARAF和WIGDERSON改进,但是我们获得了更好的界限,并获得了更基本的证据。

The Sylvester-Gallai Theorem states that every rank-$3$ real-representable matroid has a two-point line. We prove that, for each $k\ge 2$, every complex-representable matroid with rank at least $4^{k-1}$ has a rank-$k$ flat with exactly $k$ points. For $k=2$, this is a well-known result due to Kelly, which we use in our proof. A similar result was proved earlier by Barak, Dvir, Wigderson, and Yehudayoff and later refined by Dvir, Saraf, and Wigderson, but we get slightly better bounds with a more elementary proof.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源