论文标题
涡流的出现在星球驱动的圆盘中的边缘
Emergence of vortices at the edges of planet-driven gaps in protoplanetary discs
论文作者
论文摘要
嵌入原星盘(PPD)中的年轻行星激发了螺旋密度波,这些波浪在圆盘中传播,冲击和沉积角动量。这会导致行星轨道周围的间隙开口,即使对于低(亚热的)质量行星,前提是圆盘的有效粘度很低。已知这些行星引起的间隙的边缘很容易通过Rossby波不稳定性(RWI)出现。我们研究了由圆盘中低质量行星驱动的涡流发展的时间尺度。我们采用了通过行星驱动的冲击的近期开发的半分析理论,以预测行星附近的涡度演化,从中我们得出了行星诱导的间隙的径向剖面作为时间的函数(该过程可以具有多种其他用途,例如研究粉尘陷阱,抑制卵石积聚等)。然后,我们分析了间隙边缘对RWI的线性稳定性,以获得不稳定模式的首次出现的时间表,以及(后来)在缝隙边缘处完全开发的涡旋。我们将这些时间尺度的有用公式作为行星和圆盘参数的函数,并提供其物理上的理由。我们还针对高分辨率2D流体动力模拟进行了彻底测试我们的半分析框架,从而确认了我们的理论预测的准确性。我们讨论可以扩展半分析框架以纳入其他物理学的方法,例如行星积聚,迁移和非零盘粘度。我们的结果可用于解释PPD的观察结果,并预测模拟中涡旋的出现。
Young planets embedded in protoplanetary discs (PPDs) excite spiral density waves, which propagate, shock and deposit angular momentum in the disc. This results in gap opening around the planetary orbit, even for low (sub-thermal) mass planets, provided that the effective viscosity in the disc is low. The edges of these planet-induced gaps are known to be prone to emergence of observable vortices via the Rossby Wave Instability (RWI). We study timescales for the development of vortices driven by low mass planets in inviscid discs. We employ a recently developed semi-analytical theory of vortensity production by the planet-driven shock to predict vortensity evolution near the planet, from which we derive the radial profile of the planet-induced gap as a function of time (this procedure can have multiple other uses, e.g. to study dust trapping, suppression of pebble accretion, etc.). We then analyze the linear stability of the gap edges against the RWI, obtaining the timescales for the first appearance of unstable modes and (later) fully developed vortices at gap edges. We present useful formulae for these timescales as functions of planetary and disc parameters and provide their physical justification. We also thoroughly test our semi-analytical framework against high resolution 2D hydrodynamic simulations, confirming the accuracy of our theoretical predictions. We discuss ways in which our semi-analytical framework can be extended to incorporate additional physics, e.g. planetary accretion, migration, and non-zero disc viscosity. Our results can be used to interpret observations of PPDs and to predict emergence of vortices in simulations.