论文标题

迭代纳入 - 均匀细分光谱的通用限制定理

Universal Limit Theorem for Spectra of iterated inclusion-uniform Subdivisions

论文作者

Märte, Julian

论文摘要

这项工作的主要对象是简单复合物$ k $的顶级拉普拉斯运营商。我们在给定的非平凡细分过程中研究其光谱限制行为$ \ text {div} $。可以证明,如果$ \ text {div} $满足我们称之为包容性统一性的属性,则仅取决于$ k $的尺寸,其频谱将收敛到通用限制分布。这类分区包含重要的特殊情况,例如$ r \ geq 2 $ and dimension $ d = 2 $或BARYCENTRIC Subdivision $ \ text {sd {sd} $,例如edgewise $ \ text {esd} _r $。这与Brenti和Welker的结果相似,表明$ f $ f $ polynomials的迭代barycentric分区的根源仅根据$ k $的尺寸而融合到一套通用的根系中。 此外,我们确定了特定细分的通用限制函数的家族,其中顶级面部由锥体在其边界上取代。我们将证明,$ \ text {div} $的这种选择是光谱中图细分的自然概括。这些限制是通过对双图的序列的明确光谱删除获得的,该序列被表示为扎根的常规树上的一系列Schreier图。 最后,我们将指出,迭代细分的通用序列可以通过一系列图表来实现,如分形的光谱分析中。我们将构造一个自相似的图序列,该序列将细分的迭代应用双重化。

The main object of this work is the top-dimensional Laplacian operator of a simplicial complex $K$. We study its spectral limiting behavior under a given non-trivial subdivision procedure $\text{div}$. It will be shown that in case $\text{div}$ satisfies a property we call inclusion-uniformity its spectrum converges to a universal limiting distribution only depending on the dimension of $K$. This class of subdivisions contains important special cases such as the edgewise subdivision $\text{esd}_r$ for $r\geq 2$ and dimension $d=2$ or the barycentric subdivision $\text{sd}$. This parallels a result of Brenti and Welker showing that the roots of $f$-polynomials of iterated barycentric subdivisions converge to a universal set of roots only depending on the dimension of $K$. Furthermore we determine the family of universal limiting functions for the particular subdivision where the top dimensional faces are replaced by a cone over their boundary. We will show that this choice of $\text{div}$ is the natural generalization of graph subdivision in the spectral sense. These limits are obtained by explicit spectral decimation of the sequence of its dual graphs which is represented as a sequence of Schreier graphs on a rooted regular tree. Finally we will point out that a generic sequence of iterated subdivisions can be realized by a sequence of graphs as in spectral analysis on fractals. We will give a construction of a self-similar sequence of graphs which dualizes the iterated application of subdivision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源