论文标题

3Dgazenet:从合成视图的弱点概括凝视估计

3DGazeNet: Generalizing Gaze Estimation with Weak-Supervision from Synthetic Views

论文作者

Ververas, Evangelos, Gkagkos, Polydefkis, Deng, Jiankang, Doukas, Michail Christos, Guo, Jia, Zafeiriou, Stefanos

论文摘要

开发良好地概括为看不见的域和野外条件的凝视估计模型仍然是一个挑战,没有已知的最佳解决方案。这主要是由于难以获取涵盖现实世界中存在的面部,头姿势和环境的分布的地面真相数据。最近的方法试图使用域的适应来缩小特定源和目标域之间的差距。在这项工作中,我们建议训练可以直接在新的环境中使用而无需适应的一般凝视估计模型。为此,我们利用了以下观察结果,即将头部,身体和手部姿势估计受益于将其作为密集的3D坐标预测进行修改,并类似地将视线估计为致密3D眼网的回归。为了缩小图像域之间的差距,我们创建了一个大规模的数据集,其中包括凝视伪通量的各种面孔,我们根据场景的3D几何形状提取,并设计一个多视图监督框架,以平衡其在训练过程中的效果。我们在凝视概括的任务中测试了我们的方法,在没有地面真相数据的情况下,与最先进的方法相比,我们证明了高达30%的改善,而在当时没有地面真相数据。该项目材料可用于研究目的,网址为https://github.com/vagver/3dgazenet。

Developing gaze estimation models that generalize well to unseen domains and in-the-wild conditions remains a challenge with no known best solution. This is mostly due to the difficulty of acquiring ground truth data that cover the distribution of faces, head poses, and environments that exist in the real world. Most recent methods attempt to close the gap between specific source and target domains using domain adaptation. In this work, we propose to train general gaze estimation models which can be directly employed in novel environments without adaptation. To do so, we leverage the observation that head, body, and hand pose estimation benefit from revising them as dense 3D coordinate prediction, and similarly express gaze estimation as regression of dense 3D eye meshes. To close the gap between image domains, we create a large-scale dataset of diverse faces with gaze pseudo-annotations, which we extract based on the 3D geometry of the scene, and design a multi-view supervision framework to balance their effect during training. We test our method in the task of gaze generalization, in which we demonstrate improvement of up to 30% compared to state-of-the-art when no ground truth data are available, and up to 10% when they are. The project material are available for research purposes at https://github.com/Vagver/3DGazeNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源