论文标题
RISNET:专用可伸缩的神经网络体系结构,用于优化可重构的智能表面
RISnet: a Dedicated Scalable Neural Network Architecture for Optimization of Reconfigurable Intelligent Surfaces
论文作者
论文摘要
可重新配置的智能表面(RIS)是下一代无线通信的有前途的技术。它包含许多被动天线,它们反映了从发射器到接收器的信号,而没有改变幅度。尽管单个天线具有简单的功能,但大量天线具有巨大的信号处理潜力。但是,这也使RIS配置成为高维问题,该问题可能没有封闭形式的解决方案,并且具有很高的复杂性,因此,如果我们应用了迭代的数值解决方案,则在线实时应用中存在严重的困难。在本文中,我们介绍了一种机器学习方法,以最大化加权总数(WSR)。我们提出了一个名为Risnet的专用神经网络架构。 RIS优化是根据产品和直接通道的RIS属性以及均质RIS天线设计的。由于可训练的参数的数量独立于RIS天线的数量(因为所有天线共享相同的参数),因此该体系结构是可扩展的。使用加权最小平方误差(WMMSE)预编码,并设计了交替优化(AO)训练程序。测试结果表明,所提出的方法的表现优于最先进的块坐标下降(BCD)算法。此外,尽管培训需要几个小时,但几乎可以使用训练的模型(应用程序)进行在线测试,这使其适用于实时应用。与之相比,BCD算法需要更多的收敛时间。因此,所提出的方法在性能和复杂性方面优于最新算法。
The reconfigurable intelligent surface (RIS) is a promising technology for next-generation wireless communication. It comprises many passive antennas, which reflect signals from the transmitter to the receiver with adjusted phases without changing the amplitude. The large number of the antennas enables a huge potential of signal processing despite the simple functionality of a single antenna. However, it also makes the RIS configuration a high dimensional problem, which might not have a closed-form solution and has a high complexity and, as a result, severe difficulty in online real-time application if we apply iterative numerical solutions. In this paper, we introduce a machine learning approach to maximize the weighted sum-rate (WSR). We propose a dedicated neural network architecture called RISNet. The RIS optimization is designed according to the RIS property of product and direct channel and homogeneous RIS antennas. The architecture is scalable due to the fact that the number of trainable parameters is independent from the number of RIS antennas (because all antennas share the same parameters). The weighted minimum mean squared error (WMMSE) precoding is applied and an alternating optimization (AO) training procedure is designed. Testing results show that the proposed approach outperforms the state-of-the-art block coordinate descent (BCD) algorithm. Moreover, although the training takes several hours, online testing with trained model (application) is almost instant, which makes it feasible for real-time application. Compared to it, the BCD algorithm requires much more convergence time. Therefore, the proposed method outperforms the state-of-the-art algorithm in both performance and complexity.