论文标题
SSDA3D:从点云进行3D对象检测的半监督域适应
SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from Point Cloud
论文作者
论文摘要
基于激光雷达的3D对象检测是高级自主驾驶系统中必不可少的任务。尽管出色的3D检测器已经取得了令人印象深刻的检测结果,但在面对看不见的域,例如不同的激光雷达构型,不同的城市和天气状况时,它们的性能变性很大。主流方法倾向于通过利用无监督的领域适应(UDA)技术来解决这些挑战。但是,这些UDA溶液在发生严重的域移动时,例如从Waymo(64梁)到Nuscenes(32梁)时,仅产生不令人满意的3D检测结果。为了解决这个问题,我们提出了一种用于3D对象检测(SSDA3D)的新型半监督域自适应方法,其中只有少数标记的目标数据可用,但可以显着提高适应性性能。特别是,我们的SSDA3D包括一个域间适应阶段和一个内域泛化阶段。在第一阶段,提出了一个域间点模块,以有效地对齐跨域的点云分布。点切符号生成了中间域的混合样本,从而鼓励学习域不变知识。然后,在第二阶段,我们进一步增强了模型以更好地概括未标记的目标集合。这是通过探索半监督学习中域内点混合物来实现的,该学习基本上是规范伪标签分布。从Waymo到Nuscenes的实验表明,只有10%标记的目标数据,我们的SSDA3D可以超过具有100%目标标签的完全监督的Oracle模型。我们的代码可在https://github.com/yinjunbo/ssda3d上找到。
LiDAR-based 3D object detection is an indispensable task in advanced autonomous driving systems. Though impressive detection results have been achieved by superior 3D detectors, they suffer from significant performance degeneration when facing unseen domains, such as different LiDAR configurations, different cities, and weather conditions. The mainstream approaches tend to solve these challenges by leveraging unsupervised domain adaptation (UDA) techniques. However, these UDA solutions just yield unsatisfactory 3D detection results when there is a severe domain shift, e.g., from Waymo (64-beam) to nuScenes (32-beam). To address this, we present a novel Semi-Supervised Domain Adaptation method for 3D object detection (SSDA3D), where only a few labeled target data is available, yet can significantly improve the adaptation performance. In particular, our SSDA3D includes an Inter-domain Adaptation stage and an Intra-domain Generalization stage. In the first stage, an Inter-domain Point-CutMix module is presented to efficiently align the point cloud distribution across domains. The Point-CutMix generates mixed samples of an intermediate domain, thus encouraging to learn domain-invariant knowledge. Then, in the second stage, we further enhance the model for better generalization on the unlabeled target set. This is achieved by exploring Intra-domain Point-MixUp in semi-supervised learning, which essentially regularizes the pseudo label distribution. Experiments from Waymo to nuScenes show that, with only 10% labeled target data, our SSDA3D can surpass the fully-supervised oracle model with 100% target label. Our code is available at https://github.com/yinjunbo/SSDA3D.