论文标题
半监督对象检测,通过对象对比度学习和回归不确定性
Semi-Supervised Object Detection with Object-wise Contrastive Learning and Regression Uncertainty
论文作者
论文摘要
半监督对象检测(SSOD)旨在通过利用额外的未标记数据来提高检测性能。 SSOD的教师框架已被证明是有希望的,其中教师网络生成了未标记数据的伪标签,以帮助培训学生网络。由于伪标签是嘈杂的,因此过滤伪标签对于利用这种框架的潜力至关重要。与现有的次优方法不同,我们建议在教师学生框架中进行分类和回归头的两步伪标签过滤。对于分类头,OCL(通过对象的对比度学习)正规化对象表示学习,该学习利用未标记的数据来通过提高分类得分的歧视性来改善伪标签过滤。这旨在将同一类中的对象拉在一起,并从不同类中推开对象。对于回归头,我们进一步提出了RUPL(回归 - 不确定性引导的伪标记),以了解标签滤波的对象定位的不确定性。通过共同过滤分类和回归负责人的伪标签,学生网络从教师网络中获得更好的指导,以进行对象检测任务。与现有方法相比,Pascal VOC和MS-Coco数据集的实验结果证明了我们提出的方法具有竞争性能的优越性。
Semi-supervised object detection (SSOD) aims to boost detection performance by leveraging extra unlabeled data. The teacher-student framework has been shown to be promising for SSOD, in which a teacher network generates pseudo-labels for unlabeled data to assist the training of a student network. Since the pseudo-labels are noisy, filtering the pseudo-labels is crucial to exploit the potential of such framework. Unlike existing suboptimal methods, we propose a two-step pseudo-label filtering for the classification and regression heads in a teacher-student framework. For the classification head, OCL (Object-wise Contrastive Learning) regularizes the object representation learning that utilizes unlabeled data to improve pseudo-label filtering by enhancing the discriminativeness of the classification score. This is designed to pull together objects in the same class and push away objects from different classes. For the regression head, we further propose RUPL (Regression-Uncertainty-guided Pseudo-Labeling) to learn the aleatoric uncertainty of object localization for label filtering. By jointly filtering the pseudo-labels for the classification and regression heads, the student network receives better guidance from the teacher network for object detection task. Experimental results on Pascal VOC and MS-COCO datasets demonstrate the superiority of our proposed method with competitive performance compared to existing methods.