论文标题
具有连续横向密度曲线的太阳冠状平板中的站立香肠扰动:截止波数,evanevanscent eigenmodes和振荡连续性
Standing Sausage Perturbations in Solar Coronal Slabs with Continuous Transverse Density Profiles: cutoff wavenumbers, evanescent eigenmodes, and oscillatory continuum
论文作者
论文摘要
太阳活性区域环中观察到的香肠扰动通常归因于临界轴向波数的相关性以及随之而来的被困模式(称为````evanestent)eigenmodes'')。然而,最近的一些特征值问题研究产生的是,对于那些平衡,外部密度变化较大的平衡可能会消失,从而对候选香肠扰动的稀有性产生怀疑。我们检查了直,横向结构化的冠状板对小振幅香肠型扰动的反应,这些扰动通过解决封闭域的特征性的初始值问题来激发轴向基础。平板外部的密度变化取决于某些陡度参数$μ$,而从理论上讲,当$μ\ ge 2 $($μ<2 $)时,理论上会出现截止的波数。但是,我们的数值结果表明,尽管$μ$差异,尽管模态行为有所不同,但当$μ$变化时,系统演变没有质量差异。当$μ\ ge 2 $时,仅允许振荡性本本。当域扩大时,我们的离散特征范围变得越来越紧密,并为真正开放的系统产生振荡性连续体。当$μ<2 $时,仍允许振荡性本征并主导系统的演变。我们表明,截止波数的无关紧要并不意味着所有快速波都是evan的。相反,这意味着当域大小增加时,出现了越来越多的evanscent征收量。我们得出的结论是,即使在此处提出的波导,香肠扰动仍然难以检测。
The lack of observed sausage perturbations in solar active region loops is customarily attributed to the relevance of cutoff axial wavenumbers and the consequent absence of trapped modes (called ``evanescent eigenmodes'' here). However, some recent eigenvalue problem studies yield that cutoff wavenumbers may disappear for those equilibria where the external density varies sufficiently slowly, thereby casting doubt on the rarity of candidate sausage perturbations. We examine the responses of straight, transversely structured, coronal slabs to small-amplitude sausage-type perturbations that excite axial fundamentals by solving the pertinent initial value problem with eigensolutions for a closed domain. The density variation in the slab exterior is dictated by some steepness parameter $μ$, and cutoff wavenumbers are theoretically expected to be present (absent) when $μ\ge 2$ ($μ< 2$). However, our numerical results show no qualitative difference in the system evolution when $μ$ varies, despite the differences in the modal behavior. Only oscillatory eigenmodes are permitted when $μ\ge 2$. Our discrete eigenspectrum becomes increasingly closely spaced when the domain broadens, and an oscillatory continuum results for a truly open system. Oscillatory eigenmodes remain allowed and dominate the system evolution when $μ<2$. We show that the irrelevance of cutoff wavenumbers does not mean that all fast waves are evanescent. Rather, it means that an increasing number of evanescent eigenmodes emerge when the domain size increases. We conclude that sausage perturbations remain difficult to detect even for the waveguide formulated here.