论文标题
热力学重力:最佳运输和负有效尺寸
Gravity from thermodynamics: optimal transport and negative effective dimensions
论文作者
论文摘要
我们证明了管理真空重力压缩的经典运动方程(以及更通用的扭曲产品的空间)和在时间演化下的熵的凹陷特性。这是通过将最佳运输理论与内部空间中的Raychaudhuri方程联系起来来获得的,在该空间中,扭曲因子引入了有效的曲率和(负)内部维度的概念。当满足减少的能量条件时,可以根据宇宙常数$λ$来表征凹度;结果,单独使用$λ$的旋转两个kaluza-klein领域的质量遵守界限。我们表明,在不假定合成的RICCI下限的情况下,KK光谱上的某些Cheeger界限也存在,在大型无限的希尔伯特式公制测量空间中,其中包括D-Brane和O-Plane奇异性。作为应用程序,我们展示了文献中的某些近似字符串理论解决方案如何实现尺度分离,并构建了由Casimir Energy支持的M理论的新的明确的参数规模分离的AD解决方案。
We prove an equivalence between the classical equations of motion governing vacuum gravity compactifications (and more general warped-product spacetimes) and a concavity property of entropy under time evolution. This is obtained by linking the theory of optimal transport to the Raychaudhuri equation in the internal space, where the warp factor introduces effective notions of curvature and (negative) internal dimension. When the Reduced Energy Condition is satisfied, concavity can be characterized in terms of the cosmological constant $Λ$; as a consequence, the masses of the spin-two Kaluza-Klein fields obey bounds in terms of $Λ$ alone. We show that some Cheeger bounds on the KK spectrum hold even without assuming synthetic Ricci lower bounds, in the large class of infinitesimally Hilbertian metric measure spaces, which includes D-brane and O-plane singularities. As an application, we show how some approximate string theory solutions in the literature achieve scale separation, and we construct a new explicit parametrically scale-separated AdS solution of M-theory supported by Casimir energy.