论文标题
在节点线超导体中费米子相互作用与疾病之间的相互作用的影响
Effects of the interplay between fermionic interactions and disorders in the nodal-line superconductors
论文作者
论文摘要
我们研究了非中心结节线超导体超导圆顶下方的效率 - 弗里米疗相互作用与无序散射之间的相互作用。随着重新规定组的应用,从所有相互作用参数的耦合方程中提取了几种有趣的低能行为。在干净的极限下,费米 - 特弗米昂的相互作用随着降低能量尺度而减小,但相反,费米昂速度爬升并接近某些饱和值。这会根据其初始比例而略有减少或增加费米速度的各向异性。 After bringing out four kinds of disorders designated by the random charge ($Δ_{1}$), random mass ($Δ_{2}$), random axial chemical potential ($Δ_{3}$), and spin-orbit scatterers ($Δ_{4}$) based on their own unique features, we begin with presenting the distinct low-energy fates of these disorders.对于唯一混乱的存在,其强度变为相关的($δ_{1,4} $),或者在低能策略中变得无关紧要($δ_{2,3} $)。但是,多种疾病的竞争能够质量重塑疾病的低能特性$Δ_{2,3,4} $。此外,只要存在$δ_{1,2,3} $中的两个,它就可以产生最初缺失的障碍。此外,费米 - 费米耦合对$δ_4$的存在不敏感,但相当多地通过$Δ_1$,$Δ_2$或$δ_3$修改,并且在不同的疾病的共有性下向零或某些有限的非零值演变。此外,对于$δ_{2,3} $的唯一存在,费米亚速度朝某些有限的饱和值流动,并且在所有其他情况下都消失了。至于它们的比例,一旦该疾病服从费米尼相互作用,它就会增加一些增加,否则可以保持固定的恒定恒定。
We study the interplay between fermion-fermion interactions and disorder scatterings beneath the superconducting dome of noncentrosymmetric nodal-line superconductors. With the application of renormalization group, several interesting low-energy behaviors are extracted from the coupled equations of all interaction parameters. At the clean limit, fermion-fermion interactions decrease with lowering the energy scales but conversely fermion velocities climb up and approach certain saturated values. This yields a slight decrease or increase of the anisotropy of fermion velocities depending upon their initial ratio. After bringing out four kinds of disorders designated by the random charge ($Δ_{1}$), random mass ($Δ_{2}$), random axial chemical potential ($Δ_{3}$), and spin-orbit scatterers ($Δ_{4}$) based on their own unique features, we begin with presenting the distinct low-energy fates of these disorders. For the presence of sole disorder, its strength becomes either relevant ($Δ_{1,4}$) or irrelevant($Δ_{2,3}$) in the low-energy regime. However, the competition for multiple sorts of disorders is capable of qualitatively reshaping the low-energy properties of disorders $Δ_{2,3,4}$. Besides, it can generate an initially absent disorder as long as two of $Δ_{1,2,3}$ are present. In addition, the fermion-fermion couplings are insensitive to the presence of $Δ_4$ but rather substantially modified by $Δ_1$, $Δ_2$, or $Δ_3$, and evolve towards zero or certain finite non-zero values under the coexistence of distinct disorders. Furthermore, the fermion velocities flow towards certain finite saturated value for the only presence of $Δ_{2,3}$ and vanish for all other situations. As to their ratio, it acquires a little increase once the disorder is subordinate to fermionic interactions, otherwise keeps some fixed constant.