论文标题
互补的Romanovski-Routh多项式及其零
Complementary Romanovski-Routh polynomials and their zeros
论文作者
论文摘要
数值方法(例如通过高斯正交公式的积分估计)等数值方法的疗效取决于正交多项式的相关家族的零体的定位。在这方面,在单位圆圈上对正交公式的重新兴趣以及$ r_ {ii} $ - 键入多项式的兴趣,其中包括互补的Romanovski-Routh多项式,在这项工作中,我们提供了其零零的属性集合。我们的结果包括极端边界,凸度和密度,以及通过渐近公式与经典正交多项式与经典正交多项式的联系。
The efficacy of numerical methods like integral estimates via Gaussian quadrature formulas depends on the localization of the zeros of the associated family of orthogonal polynomials. In this regard, following the renewed interest in quadrature formulas on the unit circle, and $R_{II}$-type polynomials, which include the complementary Romanovski-Routh polynomials, in this work we present a collection of properties of their zeros. Our results include extreme bounds, convexity, and density, alongside the connection of such polynomials to classical orthogonal polynomials via asymptotic formulas.