论文标题

使用图形的不可数的Hadwiger猜想和树木的特征

The Uncountable Hadwiger Conjecture and Characterizations of Trees Using Graphs

论文作者

Uhrik, Dávid

论文摘要

我们证明,存在$λ$的非特殊树的存在等同于存在一个不可估量的彩色图,没有$ k_ {ω_1} $ size $λ$的少数,建立了特殊树号码与无可住的Hadwiger猜想之间的连接。还推导了使用图的Aronszajn,Kurepa和Suslin树的表征。引入了新的图形连接性概念,我们可以使用该图表表征弱紧凑的红衣主教。

We prove that the existence of a non-special tree of size $λ$ is equivalent to the existence of an uncountably chromatic graph with no $K_{ω_1}$ minor of size $λ$, establishing a connection between the special tree number and the uncountable Hadwiger conjecture. Also characterizations of Aronszajn, Kurepa and Suslin trees using graphs are deduced. A new generalized notion of connectedness for graphs is introduced using which we are able to characterize weakly compact cardinals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源