论文标题
状态估计连续二聚体时间非线性随机系统
State Estimation for Continuous-Discrete-Time Nonlinear Stochastic Systems
论文作者
论文摘要
状态估计将反馈纳入基于优化的高级过程控制系统中,对于模型预测控制的性能非常重要。我们描述了扩展的Kalman滤波器,无气味的Kalman滤波器,集合Kalman滤波器和涉及随机微分方程的连续滴定时间非线性系统的粒子过滤器。连续 - 差异时间非线性系统是建模由数字控制器控制的物理系统的自然方法。我们在MATLAB中实施了状态估计方法,使用修改后的四型系统的模拟来说明和评估其性能。该系统是非Stift,并且使用显式数值集成方案来实现状态估计方法。我们根据模拟视野的平均绝对百分比误差来评估状态估计方法的准确性。每种方法成功地估算了模拟修改后的四个坦克系统的状态和未衡量的干扰。关键的贡献是连续 - 二散时间非线性随机系统的状态估计方法的概述和比较。这可以指导有效的实施。
State estimation incorporates the feedback in optimization based advanced process control systems and is very important for the performance of model predictive control. We describe the extended Kalman filter, the unscented Kalman filter, the ensemble Kalman filter, and a particle filter for continuous-discrete time nonlinear systems involving stochastic differential equations. Continuous-discrete time nonlinear systems is a natural way to model physical systems controlled by digital controllers. We implement the state estimation methods in Matlab, illustrate and evaluate their performance using simulations of the modified four-tank system. This system is non-stiff and the state estimation methods are implemented numerically using an explicit numerical integration scheme. We evaluate the accuracy of the state estimation methods in terms of the mean absolute percentage error over the simulation horizon. Each method successfully estimates the states and unmeasured disturbances of the simulated modified four-tank system. The key contribution is an overview and comparison of state estimation methods for continuous-discrete time nonlinear stochastic systems. This can guide efficient implementations.