论文标题
揭示基于高吞吐量数据集的2D材料中缺陷的复杂结构特性相关性
Unveiling the complex structure-property correlation of defects in 2D materials based on high throughput datasets
论文作者
论文摘要
修改材料的物理特性和具有按需特征的材料的设计是现代技术的核心。罕见的应用依赖于纯材料 - 大多数设备和技术需要通过合金仔细设计材料特性,从而创建复合材料的异质结构或可控的缺陷引入。同时,众所周知,这种设计师的材料很难进行建模。因此,将机器学习方法应用于此类系统非常诱人。不幸的是,如今,只有少数机器学习友好的材料数据库。我们开发了一个平台,可轻松实施机器学习技术来设计材料,并使用原始材料和缺陷材料的数据集对其进行填充。在这里,我们描述了使用DFT计算的2D材料(例如MOS2,WSE2,HBN,GASE,INSE和黑磷)中缺陷的数据集。我们的研究提供了对2D材料中缺陷特性的复杂行为的数据驱动的物理理解,这有望为开发有效的机器学习模型的发展提供了希望。此外,随着数据集注册的增加,我们的数据库可以提供一个平台,以设计具有预定属性的材料。
Modification of physical properties of materials and design of materials with on-demand characteristics is at the heart of modern technology. Rare application relies on pure materials--most devices and technologies require careful design of materials properties through alloying, creating heterostructures of composites or controllable introduction of defects. At the same time, such designer materials are notoriously difficult for modelling. Thus, it is very tempting to apply machine learning methods for such systems. Unfortunately, there is only a handful of machine learning-friendly material databases available these days. We develop a platform for easy implementation of machine learning techniques to materials design and populate it with datasets on pristine and defected materials. Here we describe datasets of defects in represented 2D materials such as MoS2, WSe2, hBN, GaSe, InSe, and black phosphorous, calculated using DFT. Our study provides a data-driven physical understanding of complex behaviors of defect properties in 2D materials, holding promise for a guide to the development of efficient machine learning models. In addition, with the increasing enrollment of datasets, our database could provide a platform for designing of materials with predetermined properties.