论文标题

RGB-L:使用基于激光雷达的密度深度图增强间接视觉猛击

RGB-L: Enhancing Indirect Visual SLAM using LiDAR-based Dense Depth Maps

论文作者

Sauerbeck, Florian, Obermeier, Benjamin, Rudolph, Martin, Betz, Johannes

论文摘要

在本文中,我们提出了一种通过在RGB-D模式下构建3D激光雷达深度测量到现有的ORB-SLAM3中的新方法。我们提出并比较了深度图生成的两种方法:传统的计算机视觉方法,即相反的扩张操作以及一种有监督的基于深度学习的方法。我们通过添加直接读取LiDar Point Clouds的所谓RGB-L(LIDAR)模式,将前者直接集成到ORB-SLAM3框架中。提出的方法在KITTI ODOMETIRY数据集上进行了评估,并相互比较和标准的ORB-SLAM 3立体声方法。我们证明,根据环境,可以实现轨迹准确性和鲁棒性的优势。此外,我们证明了与立体声模式相比,ORB-SLAM3算法的运行时间可以降低40%以上。 ORB-SLAM3 RGB-L模式的相关代码将在https://github.com/tumftm/orb slam3 rgbl下作为开源软件提供。

In this paper, we present a novel method for integrating 3D LiDAR depth measurements into the existing ORB-SLAM3 by building upon the RGB-D mode. We propose and compare two methods of depth map generation: conventional computer vision methods, namely an inverse dilation operation, and a supervised deep learning-based approach. We integrate the former directly into the ORB-SLAM3 framework by adding a so-called RGB-L (LiDAR) mode that directly reads LiDAR point clouds. The proposed methods are evaluated on the KITTI Odometry dataset and compared to each other and the standard ORB-SLAM3 stereo method. We demonstrate that, depending on the environment, advantages in trajectory accuracy and robustness can be achieved. Furthermore, we demonstrate that the runtime of the ORB-SLAM3 algorithm can be reduced by more than 40 % compared to the stereo mode. The related code for the ORB-SLAM3 RGB-L mode will be available as open-source software under https://github.com/TUMFTM/ORB SLAM3 RGBL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源