论文标题
量子汉密尔顿 - 雅各比量化和形状不变性
Quantum Hamilton-Jacobi Quantization and Shape Invariance
论文作者
论文摘要
量子Hamilton-Jacobi量化方案使用量子机械系统的电势的奇异性结构来产生其特征性和本征函数,并且已经证明了几种众所周知的常规电位的功效。使用最近在超对称量子力学方面的工作,我们证明了所有常规电位和不间断的超对称性的添加形状不变性是在量子汉密尔顿 - 贾科比形式中的溶解度的足够条件。
Quantum Hamilton-Jacobi quantization scheme uses the singularity structure of the potential of a quantum mechanical system to generate its eigenspectrum and eigenfunctions, and its efficacy has been demonstrated for several well known conventional potentials. Using a recent work in supersymmetric quantum mechanics, we prove that the additive shape invariance of all conventional potentials and unbroken supersymmetry are sufficient conditions for their solvability within the quantum Hamilton-Jacobi formalism.