论文标题

考虑实际实施挑战,时间同步的完整系统状态估算

Time-Synchronized Full System State Estimation Considering Practical Implementation Challenges

论文作者

Varghese, Antos Cheeramban, Shah, Hritik, Azimian, Behrouz, Pal, Anamitra, Farantatos, Evangelos

论文摘要

由于相量测量单元(PMU)的放置问题涉及成本效益的权衡,因此将更多的PMU放在更高的电压总线上。但是,这导致许多较低电压水平的散装功率系统不被PMU观察到。因此,这种缺乏可见性使得对完整系统的时间同步状态估计成为具有挑战性的问题。我们提出了一个基于神经网络的深度状态估计器(密度)来克服这个问题。该密集采用贝叶斯框架间接地结合了从缓慢的时间尺度绘制的推论,但具有快速时间尺度的广泛监督控制和数据获取(SCADA)数据,但选择PMU数据以获得整个系统的次要情况。通过考虑拓扑变化,非高斯测量噪声以及不良数据检测和校正,可以证明所提出方法的实际实用性。使用IEEE 118-BUS系统获得的结果表明,从技术经济可行性的角度来看,密集比纯粹的SCADA状态估计器和仅PMU的线性状态估计器的优势。最后,通过估计庞大且现实的2000公共汽车合成德克萨斯州系统的状态来证明密集的可伸缩性。

As the phasor measurement unit (PMU) placement problem involves a cost-benefit trade-off, more PMUs get placed on the higher voltage buses. However, this causes many of the lower voltage levels of the bulk power system to not be observed by PMUs. This lack of visibility then makes time-synchronized state estimation of the full system a challenging problem. We propose a Deep Neural network-based State Estimator (DeNSE) to overcome this problem. The DeNSE employs a Bayesian framework to indirectly combine inferences drawn from slow timescale but widespread supervisory control and data acquisition (SCADA) data with fast timescale but select PMU data to attain sub-second situational awareness of the entire system. The practical utility of the proposed approach is demonstrated by considering topology changes, non-Gaussian measurement noise, and bad data detection and correction. The results obtained using the IEEE 118-bus system show the superiority of the DeNSE over a purely SCADA state estimator and a PMU-only linear state estimator from a techno-economic viability perspective. Lastly, scalability of the DeNSE is proven by estimating the states of a large and realistic 2000-bus Synthetic Texas system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源