论文标题
磁性粒子学:当前的挑战和未来机会
Magnetoplasmonics: current challenges and future opportunities
论文作者
论文摘要
血浆代表了一种独特的方法,可以限制和增强远低于衍射极限的电磁辐射,从而为新型应用带来了巨大的潜力,例如能量收获,光电子和纳米级生物化学。为了实现新的功能,等离激子特性与其他材料功能的组合变得越来越有吸引力。从这个角度来看,我们回顾了纳米级磁质体的当前现状,挑战和未来的机会,这是一个新兴区域,旨在使用磁性特性,磁性诱导的集体电子兴奋,使用磁性特性,或磁性景观,以控制等几何形状,以控制等离子的几何形状和等离子体。我们首先要突出该研究领域的历史和原理的基石。然后,我们通过展示在中红外轻驱动的旋转器和磁质质子的新型材料(例如透明的导电氧化物和双曲线超材料)中的新型材料来提供对其未来发展的愿景。同样,我们还概述了等离子体驱动的磁力化动力学,纳米级磁通磁性和声音 - 磁性质体学的最新发展。最后,我们将个人对这个蓬勃发展的研究领域的未来进行个人构想。
Plasmonics represents a unique approach to confine and enhance electromagnetic radiation well below the diffraction limit, bringing a huge potential for novel applications, for instance in energy harvesting, optoelectronics, and nanoscale biochemistry. To achieve novel functionalities, the combination of plasmonic properties with other material functions has become increasingly attractive. In this Perspective, we review the current state of the art, challenges, and future opportunities in nanoscale magnetoplasmonics, an emerging area aiming to merge magnetism and plasmonics in confined geometries to control either plasmons, electromagnetic-induced collective electronic excitations, using magnetic properties, or magnetic phenomena with plasmons. We begin by highlighting the cornerstones of the history and principles of this research field. We then provide our vision of its future development by showcasing raising research directions in mid-infrared light-driven spintronics and novel materials for magnetoplasmonics, such as transparent conductive oxides and hyperbolic metamaterials. As well, we provide an overview of recent developments in plasmon-driven magnetization dynamics, nanoscale optomagnetism and acousto-magnetoplasmonics. We conclude by giving our personal vision of the future of this thriving research field.