论文标题

基于FBG的可变长度估计,用于扩展软机器人操纵器的形状感测

FBG-Based Variable-Length Estimation for Shape Sensing of Extensible Soft Robotic Manipulators

论文作者

Lu, Yiang, Chen, Wei, Chen, Zhi, Zhou, Jianshu, Liu, Yun-Hui

论文摘要

在本文中,我们提出了一种新型的可变长度估计方法,用于利用纤维布拉格光栅(FBG)的可扩展软机器人的形状传感。 FBG传感器的形状重建已越来越多地用于软机器人,而FBG纤维的狭窄拉伸范围使得很难获得可扩展的机器人的准确传感结果。为了实现这一限制,我们通过利用刚性弯曲通道来新引入一个基于FBG的长度传感器,该通道允许FBG在机器人的身体伸展/压缩后滑入机器人中,因此我们可以在纤维中搜索并匹配具有特定恒定弯曲的FBG,以确定有效长度。从与上述测量值的融合中,相应地提出了一种无模型的滤波技术,用于同时校准可变长度模型和对机器人的时间连续长度估计,从而实现了仅使用FBG的准确形状传感。该方法的性能已在自由和非结构化环境中配备有FBG纤维的可扩展软机器人上进行了实验评估。有关长度估计和形状传感的动态精度和鲁棒性的结果证明了我们方法的有效性。

In this paper, we propose a novel variable-length estimation approach for shape sensing of extensible soft robots utilizing fiber Bragg gratings (FBGs). Shape reconstruction from FBG sensors has been increasingly developed for soft robots, while the narrow stretching range of FBG fiber makes it difficult to acquire accurate sensing results for extensible robots. Towards this limitation, we newly introduce an FBG-based length sensor by leveraging a rigid curved channel, through which FBGs are allowed to slide within the robot following its body extension/compression, hence we can search and match the FBGs with specific constant curvature in the fiber to determine the effective length. From the fusion with the above measurements, a model-free filtering technique is accordingly presented for simultaneous calibration of a variable-length model and temporally continuous length estimation of the robot, enabling its accurate shape sensing using solely FBGs. The performances of the proposed method have been experimentally evaluated on an extensible soft robot equipped with an FBG fiber in both free and unstructured environments. The results concerning dynamic accuracy and robustness of length estimation and shape sensing demonstrate the effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源