论文标题

MARF:代表火星为神经辐射场

MaRF: Representing Mars as Neural Radiance Fields

论文作者

Giusti, Lorenzo, Garcia, Josue, Cozine, Steven, Suen, Darrick, Nguyen, Christina, Alimo, Ryan

论文摘要

这项工作的目的是介绍Marf,这是一个新颖的框架,能够使用Rover相机中的几种图像集合来综合火星环境。这个想法是生成火星表面的3D场景,以应对行星表面探索中的关键挑战,例如:行星地质,模拟导航和形状分析。尽管存在不同的方法来启用火星表面的3D重建,但它们依赖于经典的计算机图形技术,这些技术在重建过程中会产生大量的计算资源,并且具有局限性的局限性,以推广重建以看不见的场景并适应来自Rover摄影机的新图像。所提出的框架通过利用神经辐射场(NERFS)来解决上述局限性,该方法通过使用稀疏的图像集优化连续的体积场景函数来合成复杂场景。为了加快学习过程,我们用他们的神经图形原语(NGP)替换了一组稀疏的漫游者图像,这是一组固定长度的向量,这些向量被学会地保留了尺寸明显较小的原始图像的信息。在实验部分中,我们演示了由好奇的漫游者,持久漫游者和Ingenuity直升机捕获的实际火星数据集创建的环境,所有这些都在行星数据系统(PDS)上可用。

The aim of this work is to introduce MaRF, a novel framework able to synthesize the Martian environment using several collections of images from rover cameras. The idea is to generate a 3D scene of Mars' surface to address key challenges in planetary surface exploration such as: planetary geology, simulated navigation and shape analysis. Although there exist different methods to enable a 3D reconstruction of Mars' surface, they rely on classical computer graphics techniques that incur high amounts of computational resources during the reconstruction process, and have limitations with generalizing reconstructions to unseen scenes and adapting to new images coming from rover cameras. The proposed framework solves the aforementioned limitations by exploiting Neural Radiance Fields (NeRFs), a method that synthesize complex scenes by optimizing a continuous volumetric scene function using a sparse set of images. To speed up the learning process, we replaced the sparse set of rover images with their neural graphics primitives (NGPs), a set of vectors of fixed length that are learned to preserve the information of the original images in a significantly smaller size. In the experimental section, we demonstrate the environments created from actual Mars datasets captured by Curiosity rover, Perseverance rover and Ingenuity helicopter, all of which are available on the Planetary Data System (PDS).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源