论文标题

与神经成对条件随机场的超细实体的建模标签相关性

Modeling Label Correlations for Ultra-Fine Entity Typing with Neural Pairwise Conditional Random Field

论文作者

Jiang, Chengyue, Jiang, Yong, Wu, Weiqi, Xie, Pengjun, Tu, Kewei

论文摘要

Ultra-Fine实体键入(UFET)旨在预测多种类型的短语,这些短语正确描述了句子中给定实体的类别。最新的作品独立推断了每个实体类型,而忽略了类型之间的相关性,例如,当实体被推断为总统时,它也应该是政治家和领导者。为此,我们使用一个称为成对条件随机场(PCRF)的无向图形模型来制定UFET问题,其中类型变量不仅不仅受输入的影响,而且还与所有其他类型变量有关。我们使用各种现代骨干来计算实体来计算一元电势,并从类型短语表示中得出成对电位,这些词组表示既捕获先前的语义信息又促进了加速推理。我们使用均值场变异推断来对非常大型集合的有效类型推理,并将其作为神经网络模块展开以实现端到端训练。 UFET上的实验表明,神经-PCRF的成本几乎不得优于其骨架,而对基于交叉编码的SOTA的竞争性能很快,而竞争性能更快。我们还发现神经PCRF在广泛使用的具有较小类型集的细粒度键入数据集上有效。我们将Neural-PCRF打包为一个网络模块,可以轻松地插入多标签类型分类器中,然后在https://github.com/modelscope/adaseq/adaseq/tree/master/master/master/examples/npcrf中释放。

Ultra-fine entity typing (UFET) aims to predict a wide range of type phrases that correctly describe the categories of a given entity mention in a sentence. Most recent works infer each entity type independently, ignoring the correlations between types, e.g., when an entity is inferred as a president, it should also be a politician and a leader. To this end, we use an undirected graphical model called pairwise conditional random field (PCRF) to formulate the UFET problem, in which the type variables are not only unarily influenced by the input but also pairwisely relate to all the other type variables. We use various modern backbones for entity typing to compute unary potentials, and derive pairwise potentials from type phrase representations that both capture prior semantic information and facilitate accelerated inference. We use mean-field variational inference for efficient type inference on very large type sets and unfold it as a neural network module to enable end-to-end training. Experiments on UFET show that the Neural-PCRF consistently outperforms its backbones with little cost and results in a competitive performance against cross-encoder based SOTA while being thousands of times faster. We also find Neural- PCRF effective on a widely used fine-grained entity typing dataset with a smaller type set. We pack Neural-PCRF as a network module that can be plugged onto multi-label type classifiers with ease and release it in https://github.com/modelscope/adaseq/tree/master/examples/NPCRF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源