论文标题

Fedrolex:滚动子模型提取

FedRolex: Model-Heterogeneous Federated Learning with Rolling Sub-Model Extraction

论文作者

Alam, Samiul, Liu, Luyang, Yan, Ming, Zhang, Mi

论文摘要

大多数跨设备联合学习(FL)研究都集中在全球服务器模型和本地客户端模型相同的模型合并设置上。但是,这种约束不仅排除了低端客户,这些客户否则会为模型培训做出独特的贡献,而且由于设备资源的瓶颈而限制了客户培训大型模型。在这项工作中,我们提出了FedRolex,这是一种基于部分培训(PT)的方法,该方法可以实现模型的异质FL,并且可以训练大于最大客户端模型的全球服务器模型。 Fedrolex以核心采用了滚动子模型提取方案,该方案允许对全球服务器模型的不同部分进行均匀训练,从而减轻了由单个客户端模型和服务器模型架构之间的不一致所引起的客户端漂移所引起的客户漂移。我们表明,FedRolex优于最先进的基于PT的模型异质FL方法(例如联合辍学),并减少了模型异质和模型均匀的FL之间的差距,尤其是在大型大型模型的大型大数据库方案下。此外,我们还提供了有关其优于联合辍学的优势的理论统计分析,并在模拟的现实世界设备分布上评估了Fedrolex,以表明Fedrolex可以增强FL的包容性并提高低端设备的性能,而低端设备的性能不会从FL中受益。我们的代码可在以下网址找到:https://github.com/aiot-mlsys-lab/fedrolex

Most cross-device federated learning (FL) studies focus on the model-homogeneous setting where the global server model and local client models are identical. However, such constraint not only excludes low-end clients who would otherwise make unique contributions to model training but also restrains clients from training large models due to on-device resource bottlenecks. In this work, we propose FedRolex, a partial training (PT)-based approach that enables model-heterogeneous FL and can train a global server model larger than the largest client model. At its core, FedRolex employs a rolling sub-model extraction scheme that allows different parts of the global server model to be evenly trained, which mitigates the client drift induced by the inconsistency between individual client models and server model architectures. We show that FedRolex outperforms state-of-the-art PT-based model-heterogeneous FL methods (e.g. Federated Dropout) and reduces the gap between model-heterogeneous and model-homogeneous FL, especially under the large-model large-dataset regime. In addition, we provide theoretical statistical analysis on its advantage over Federated Dropout and evaluate FedRolex on an emulated real-world device distribution to show that FedRolex can enhance the inclusiveness of FL and boost the performance of low-end devices that would otherwise not benefit from FL. Our code is available at: https://github.com/AIoT-MLSys-Lab/FedRolex

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源