论文标题

WMT 2022效率任务的Rolearflush系统

The RoyalFlush System for the WMT 2022 Efficiency Task

论文作者

Qin, Bo, Jia, Aixin, Wang, Qiang, Lu, Jianning, Pan, Shuqin, Wang, Haibo, Chen, Ming

论文摘要

本文介绍了WMT 2022翻译效率任务的Royalflush神经机器翻译系统的提交。与常用的自回旋翻译系统不同,我们采用了一个称为Hybrid Recression Translation(HRT)的两阶段翻译范式,以结合自回归和非自动回调翻译的优势。具体而言,HRT首先自动取决于不连续的序列(例如,每$ k $令牌,$ k> 1 $做出预测),然后以非自动性方式填充所有先前的先前跳过代币。因此,我们可以通过调整$ k $来轻松地交易翻译质量和速度。此外,通过整合其他建模技术(例如,序列级知识蒸馏和深度编码器 - s-shallow-decoder层分配策略)和大量的工程工作,HRT可以提高80 \%的推理速度,并在相同的方面具有相同的能力。我们最快的系统在GPU延迟设置上达到6K+单词/秒,估计比去年的获胜者快3.1倍。

This paper describes the submission of the RoyalFlush neural machine translation system for the WMT 2022 translation efficiency task. Unlike the commonly used autoregressive translation system, we adopted a two-stage translation paradigm called Hybrid Regression Translation (HRT) to combine the advantages of autoregressive and non-autoregressive translation. Specifically, HRT first autoregressively generates a discontinuous sequence (e.g., make a prediction every $k$ tokens, $k>1$) and then fills in all previously skipped tokens at once in a non-autoregressive manner. Thus, we can easily trade off the translation quality and speed by adjusting $k$. In addition, by integrating other modeling techniques (e.g., sequence-level knowledge distillation and deep-encoder-shallow-decoder layer allocation strategy) and a mass of engineering efforts, HRT improves 80\% inference speed and achieves equivalent translation performance with the same-capacity AT counterpart. Our fastest system reaches 6k+ words/second on the GPU latency setting, estimated to be about 3.1x faster than the last year's winner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源