论文标题

Laplacian卷积代表交通时间序列插补

Laplacian Convolutional Representation for Traffic Time Series Imputation

论文作者

Chen, Xinyu, Cheng, Zhanhong, Cai, HanQin, Saunier, Nicolas, Sun, Lijun

论文摘要

时空交通数据插补在智能运输系统和数据驱动的决策过程中具有重要意义。为了从部分观察到的流量数据中进行有效的学习和准确的重建,我们断言在时间序列中同时表征全球和本地趋势的重要性。在文献中,实质性的作品证明了通过矩阵/张量完成模型利用流量数据的低级属性的有效性。在这项研究中,我们首先将拉普拉斯内核引入时间正则化,以表征交通时间序列中的局部趋势,该趋势可以作为圆形卷积配制。然后,我们通过将循环矩阵核标准和laplacian核的时间正则正则化组合在一起,开发出低级别的拉普拉斯卷积表示(LCR)模型,事实证明,这可以满足统一的框架,该统一框架具有快速的傅立叶变换(FFT)在对数线性时时间复杂度中的快速傅立叶变换(FFT)。通过在几个流量数据集上进行的大量实验,我们证明了LCR优于几个基线模型,用于归纳各种时间序列行为的交通时间序列(例如,数据噪声和强/弱的周期性),并重建车辆交通流的稀疏速度场。所提出的LCR模型也是对现有插补模型的大规模交通数据插补的有效解决方案。

Spatiotemporal traffic data imputation is of great significance in intelligent transportation systems and data-driven decision-making processes. To perform efficient learning and accurate reconstruction from partially observed traffic data, we assert the importance of characterizing both global and local trends in time series. In the literature, substantial works have demonstrated the effectiveness of utilizing the low-rank property of traffic data by matrix/tensor completion models. In this study, we first introduce a Laplacian kernel to temporal regularization for characterizing local trends in traffic time series, which can be formulated as a circular convolution. Then, we develop a low-rank Laplacian convolutional representation (LCR) model by putting the circulant matrix nuclear norm and the Laplacian kernelized temporal regularization together, which is proved to meet a unified framework that has a fast Fourier transform (FFT) solution in log-linear time complexity. Through extensive experiments on several traffic datasets, we demonstrate the superiority of LCR over several baseline models for imputing traffic time series of various time series behaviors (e.g., data noises and strong/weak periodicity) and reconstructing sparse speed fields of vehicular traffic flow. The proposed LCR model is also an efficient solution to large-scale traffic data imputation over the existing imputation models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源